1
|
Savino S, Borg AJE, Dennig A, Pfeiffer M, de Giorgi F, Weber H, Dubey KD, Rovira C, Mattevi A, Nidetzky B. Deciphering the enzymatic mechanism of sugar ring contraction in UDP-apiose biosynthesis. Nat Catal 2019; 2:1115-1123. [PMID: 31844840 PMCID: PMC6914363 DOI: 10.1038/s41929-019-0382-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
D-Apiose is a C-branched pentose sugar important for plant cell wall development. Its biosynthesis as UDP-D-apiose involves decarboxylation of the UDP-D-glucuronic acid precursor coupled to pyranosyl-to-furanosyl sugar ring contraction. This unusual multistep reaction is catalyzed within a single active site by UDP-D-apiose/UDP-D-xylose synthase (UAXS). Here, we decipher the UAXS catalytic mechanism based on crystal structures of the enzyme from Arabidopsis thaliana, molecular dynamics simulations expanded by QM/MM calculations, and mutational-mechanistic analyses. Our studies show how UAXS uniquely integrates a classical catalytic cycle of oxidation and reduction by a tightly bound nicotinamide coenzyme with retro-aldol/aldol chemistry for the sugar ring contraction. They further demonstrate that decarboxylation occurs only after the sugar ring opening and identify the thiol group of Cys100 in steering the sugar skeleton rearrangement by proton transfer to and from the C3’. The mechanistic features of UAXS highlight the evolutionary expansion of the basic catalytic apparatus of short-chain dehydrogenases/reductases for functional versatility in sugar biosynthesis.
Collapse
Affiliation(s)
- Simone Savino
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy.,Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Annika J E Borg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| | - Alexander Dennig
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| | - Martin Pfeiffer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| | - Francesca de Giorgi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| | - Hansjörg Weber
- Institute of Organic Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Kshatresh Dutta Dubey
- Department of Inorganic and Organic Chemistry (Organic Chemistry Section) & Institute of Computational and Theoretical Chemistry (IQTCUB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Carme Rovira
- Department of Inorganic and Organic Chemistry (Organic Chemistry Section) & Institute of Computational and Theoretical Chemistry (IQTCUB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.,Catalan Institution for Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 1, 27100, Pavia, Italy
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| |
Collapse
|
2
|
Eixelsberger T, Horvat D, Gutmann A, Weber H, Nidetzky B. Reaktion von UDP-Apiose/UDP-Xylose-Synthase mit isotopenmarkierten Substraten: Hinweise auf einen Mechanismus mit gekoppelter Oxidation und Aldolspaltung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thomas Eixelsberger
- Institut für Biotechnologie und Bioprozesstechnik; Technische Universität Graz; NAWI Graz; Petersgasse 12 8010 Graz Österreich
| | - Doroteja Horvat
- Institut für Biotechnologie und Bioprozesstechnik; Technische Universität Graz; NAWI Graz; Petersgasse 12 8010 Graz Österreich
| | - Alexander Gutmann
- Institut für Biotechnologie und Bioprozesstechnik; Technische Universität Graz; NAWI Graz; Petersgasse 12 8010 Graz Österreich
| | - Hansjörg Weber
- Institut für Organische Chemie; Technische Universität Graz; NAWI Graz; Stremayrgasse 16 8010 Graz Österreich
| | - Bernd Nidetzky
- Institut für Biotechnologie und Bioprozesstechnik; Technische Universität Graz; NAWI Graz; Petersgasse 12 8010 Graz Österreich
- Austrian Centre of Industrial Biotechnology (acib); Petersgasse 14 8010 Graz Österreich
| |
Collapse
|
3
|
Eixelsberger T, Horvat D, Gutmann A, Weber H, Nidetzky B. Isotope Probing of the UDP-Apiose/UDP-Xylose Synthase Reaction: Evidence of a Mechanism via a Coupled Oxidation and Aldol Cleavage. Angew Chem Int Ed Engl 2017; 56:2503-2507. [PMID: 28102965 PMCID: PMC5324594 DOI: 10.1002/anie.201609288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/09/2016] [Indexed: 12/05/2022]
Abstract
The C-branched sugar d-apiose (Api) is essential for plant cell-wall development. An enzyme-catalyzed decarboxylation/pyranoside ring-contraction reaction leads from UDP-α-d-glucuronic acid (UDP-GlcA) to the Api precursor UDP-α-d-apiose (UDP-Api). We examined the mechanism of UDP-Api/UDP-α-d-xylose synthase (UAXS) with site-selectively 2 H-labeled and deoxygenated substrates. The analogue UDP-2-deoxy-GlcA, which prevents C-2/C-3 aldol cleavage as the plausible initiating step of pyranoside-to-furanoside conversion, did not give the corresponding Api product. Kinetic isotope effects (KIEs) support an UAXS mechanism in which substrate oxidation by enzyme-NAD+ and retro-aldol sugar ring-opening occur coupled in a single rate-limiting step leading to decarboxylation. Rearrangement and ring-contracting aldol addition in an open-chain intermediate then give the UDP-Api aldehyde, which is intercepted via reduction by enzyme-NADH.
Collapse
Affiliation(s)
- Thomas Eixelsberger
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyNAWI GrazPetersgasse 128010GrazAustria
| | - Doroteja Horvat
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyNAWI GrazPetersgasse 128010GrazAustria
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyNAWI GrazPetersgasse 128010GrazAustria
| | - Hansjörg Weber
- Institute of Organic ChemistryGraz University of TechnologyNAWI GrazStremayrgasse 98010GrazAustria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyNAWI GrazPetersgasse 128010GrazAustria
- Austrian Centre of Industrial Biotechnology (acib)Petersgasse 148010GrazAustria
| |
Collapse
|
4
|
Choi SH, Mansoorabadi SO, Liu YN, Chien TC, Liu HW. Analysis of UDP-D-apiose/UDP-D-xylose synthase-catalyzed conversion of UDP-D-apiose phosphonate to UDP-D-xylose phosphonate: implications for a retroaldol-aldol mechanism. J Am Chem Soc 2012; 134:13946-9. [PMID: 22830643 DOI: 10.1021/ja305322x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UDP-D-apiose/UDP-D-xylose synthase (AXS) catalyzes the conversion of UDP-D-glucuronic acid to UDP-D-apiose and UDP-D-xylose. An acetyl-protected phosphonate analogue of UDP-D-apiose was synthesized and used in an in situ HPLC assay to demonstrate for the first time the ability of AXS to interconvert the two reaction products. Density functional theory calculations provided insight into the energetics of this process and the apparent inability of AXS to catalyze the conversion of UDP-D-xylose to UDP-D-apiose. The data suggest that this observation is unlikely to be due to an unfavorable equilibrium but rather results from substrate inhibition by the most stable chair conformation of UDP-D-xylose. The detection of xylose cyclic phosphonate as the turnover product reveals significant new details about the AXS-catalyzed reaction and supports the proposed retroaldol-aldol mechanism of catalysis.
Collapse
Affiliation(s)
- Sei-hyun Choi
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
5
|
Choi SH, Ruszczycky MW, Zhang H, Liu HW. A fluoro analogue of UDP-α-D-glucuronic acid is an inhibitor of UDP-α-D-apiose/UDP-α-D-xylose synthase. Chem Commun (Camb) 2011; 47:10130-2. [PMID: 21826368 DOI: 10.1039/c1cc13140k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UDP-2F-glucuronic acid was synthesized and analyzed as a mechanistic probe to investigate the ring contraction step catalyzed by UDP-d-apiose/UDP-d-xylose synthase (AXS).
Collapse
Affiliation(s)
- Sei-hyun Choi
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
6
|
Guyett P, Glushka J, Gu X, Bar-Peled M. Real-time NMR monitoring of intermediates and labile products of the bifunctional enzyme UDP-apiose/UDP-xylose synthase. Carbohydr Res 2009; 344:1072-8. [PMID: 19375693 DOI: 10.1016/j.carres.2009.03.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/17/2009] [Accepted: 03/23/2009] [Indexed: 11/25/2022]
Abstract
The conversion of UDP-alpha-d-glucuronic acid to UDP-alpha-d-xylose and UDP-alpha-d-apiose by a bifunctional potato enzyme UDP-apiose/UDP-xylose synthase was studied using real-time nuclear magnetic resonance (NMR) spectroscopy. UDP-alpha-d-glucuronic acid is converted via the intermediate uridine 5'-beta-l-threo-pentapyranosyl-4''-ulose diphosphate to UDP-alpha-d-apiose and simultaneously to UDP-alpha-d-xylose. The UDP-alpha-d-apiose that is formed is unstable and is converted to alpha-d-apio-furanosyl-1,2-cyclic phosphate and UMP. High-resolution real-time NMR spectroscopy is a powerful tool for the direct and quantitative characterization of previously undetected transient and labile components formed during a complex enzyme-catalyzed reaction.
Collapse
Affiliation(s)
- Paul Guyett
- Complex Carbohydrate Research Center, and BioEnergy Science Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
8
|
Thibodeaux CJ, Melançon CE, Liu HW. Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew Chem Int Ed Engl 2008; 47:9814-59. [PMID: 19058170 PMCID: PMC2796923 DOI: 10.1002/anie.200801204] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many biologically active small-molecule natural products produced by microorganisms derive their activities from sugar substituents. Changing the structures of these sugars can have a profound impact on the biological properties of the parent compounds. This realization has inspired attempts to derivatize the sugar moieties of these natural products through exploitation of the sugar biosynthetic machinery. This approach requires an understanding of the biosynthetic pathway of each target sugar and detailed mechanistic knowledge of the key enzymes. Scientists have begun to unravel the biosynthetic logic behind the assembly of many glycosylated natural products and have found that a core set of enzyme activities is mixed and matched to synthesize the diverse sugar structures observed in nature. Remarkably, many of these sugar biosynthetic enzymes and glycosyltransferases also exhibit relaxed substrate specificity. The promiscuity of these enzymes has prompted efforts to modify the sugar structures and alter the glycosylation patterns of natural products through metabolic pathway engineering and enzymatic glycodiversification. In applied biomedical research, these studies will enable the development of new glycosylation tools and generate novel glycoforms of secondary metabolites with useful biological activity.
Collapse
Affiliation(s)
- Christopher J. Thibodeaux
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| | - Charles E. Melançon
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| | - Hung-wen Liu
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| |
Collapse
|
9
|
Mølhøj M, Verma R, Reiter WD. The biosynthesis of the branched-chain sugar d-apiose in plants: functional cloning and characterization of a UDP-d-apiose/UDP-d-xylose synthase from Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:693-703. [PMID: 12969423 DOI: 10.1046/j.1365-313x.2003.01841.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
d-Apiose is a plant-specific branched-chain monosaccharide found in rhamnogalacturonan II (RG-II), apiogalacturonan, and several apioglycosides. Within RG-II, d-apiose serves as the binding site for borate, which leads to the formation of cross-links within the wall. Biochemical studies in duckweed and parsley have established that uridine 5'-diphospho-d-apiose (UDP-d-apiose) is formed from UDP-d-glucuronate by decarboxylation and re-arrangement of the carbon skeleton, leading to ring contraction and branch formation. The enzyme catalyzing this reaction also forms UDP-d-xylose by decarboxylation of UDP-d-glucuronate, and has therefore been named UDP-d-apiose/UDP-d-xylose synthase. Using a bioinformatics approach, we identified a candidate gene (AXS1) for this enzyme in Arabidopsis and functionally expressed its cDNA in Escherichia coli. The recombinant enzyme catalyzed the conversion of UDP-d-glucuronate to a mixture of UDP-d-apiose and UDP-d-xylose with a turnover number of 0.3 min-1. AXS1 required NAD+ for enzymatic activity, and was strongly inhibited by UDP-d-galacturonate. It was highly expressed in all plant organs consistent with a function in synthesizing an essential cell wall precursor. Database searches indicated the presence of closely related sequences in a variety of crop plants. The cloning of the AXS1 gene will help to investigate the biosynthesis of RG-II, and permit insights into the mechanism by which d-apiose and other branched monosaccharides are formed.
Collapse
Affiliation(s)
- Michael Mølhøj
- Department of Molecular and Cell Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269, USA
| | | | | |
Collapse
|
10
|
Kobayashi M, Nakagawa H, Suda I, Miyagawa I, Matoh T. Purification and cDNA cloning of UDP-D-glucuronate carboxy-lyase (UDP-D-xylose synthase) from pea seedlings. PLANT & CELL PHYSIOLOGY 2002; 43:1259-65. [PMID: 12461125 DOI: 10.1093/pcp/pcf157] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Uridine diphospho-D-glucuronate carboxy-lyase (UDP-D-xylose synthase; EC 4.1.1.35), which catalyzes the conversion of UDP-D-glucuronate to UDP-D-xylose, was purified to apparent homogenity from pea (Pisum sativum L.) seedlings. The pH optimum for enzyme activity was around 5-6, and the activity was not affected by exogeneously supplied NAD+ and NADH. The purified enzyme had a molecular weight of 250 kDa and consisted of 42 kDa polypeptides. Based on the amino acid sequence, a probe (400 bp) was prepared with degenerate primers by a reverse transcriptase-PCR. Using this probe, a clone encoding 346 amino acid residues was screened from a pea cDNA library. The recombinant protein expressed in Escherichia coli catalyzed conversion of UDP-D-glucuronate to UDP-D-xylose, confirming that the isolated clone encoded UDP-D-glucuronate carboxy-lyase.
Collapse
Affiliation(s)
- Masaru Kobayashi
- Laboratory of Plant Nutrition, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | | | | | | | | |
Collapse
|