1
|
Jiang X, Li H, Kong J, Li Y, Xin X, Zhou J, Zhang R, Lee KS, Jin BR, Gui Z. Comprehensive analysis of biotransformation pathways and products of chloramphenicol by Raoultella Ornithinolytica CT3: Pathway elucidation and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136199. [PMID: 39454335 DOI: 10.1016/j.jhazmat.2024.136199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Microbial degradation of chloramphenicol (CAP) has become important for reducing the adverse impact of environmental pollution with antibiotics. Although several pathways for CAP degradation have been identified in various bacteria, multiple metabolic pathways and their respective intermediate metabolites within a single strain are rarely reported. Here, Raoultella ornithinolytica CT3 was first isolated from silkworm excrement using CAP as the sole carbon source, and 100 mg/L CAP was almost completely degraded within 48 h. The biodegradation type of CAP followed first-order kinetics. Twenty-two CAP biotransformation products were identified using high-performance liquid chromatography and ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry. The CAP biotransformation pathways were predicted mainly in the acetylation and auxiliary pathways of propionylation and butyrylation. The toxicity of CAP biotransformation products was evaluated using the ecological structure-activity relationship (ECOSAR) model and biological indicators. The results showed that the toxicity of the intermediate metabolites changed slightly, but the final metabolite was harmless to the environment. Genomic analysis predicted that genes encoding acetyltransferase, amido-linkage hydrolase, nitroreductase, haloacetate dehalogenase, and protocatechuate 3,4-dioxygenase were associated with CAP biodegradation. This study provides new insights into the microbial degradation pathway of CAP and constitutes an ecological safety assessment for CAP-contaminated environments.
Collapse
Affiliation(s)
- Xueping Jiang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, Anhui, China
| | - Hao Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang 212100, Jiangsu, China.
| | - Jia Kong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Yuqi Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Xiangdong Xin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Jielin Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Ran Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang 212100, Jiangsu, China
| | - Kwang Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Republic of Korea
| | - Byung Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Republic of Korea
| | - Zhongzheng Gui
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang 212100, Jiangsu, China.
| |
Collapse
|
2
|
Edwards AN, Blue AJ, Conforti JM, Cordes MS, Trakselis MA, Gallagher ES. Gas-phase stability and thermodynamics of ligand-bound, binary complexes of chloramphenicol acetyltransferase reveal negative cooperativity. Anal Bioanal Chem 2023; 415:6201-6212. [PMID: 37542535 DOI: 10.1007/s00216-023-04891-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
The biological role of the bacterial chloramphenicol (Chl)-resistance enzyme, chloramphenicol acetyltransferase (CAT), has seen renewed interest due to the resurgent use of Chl against multi-drug-resistant microbes. This looming threat calls for more rationally designed antibiotic derivatives that have improved antimicrobial properties and reduced toxicity in humans. Herein, we utilize native ion mobility spectrometry-mass spectrometry (IMS-MS) to investigate the gas-phase structure and thermodynamic stability of the type I variant of CAT from Escherichia coli (EcCATI) and several EcCATI:ligand-bound complexes. EcCATI readily binds multiple Chl without incurring significant changes to its gas-phase structure or stability. A non-hydrolyzable acetyl-CoA derivative (S-ethyl-CoA, S-Et-CoA) was used to kinetically trap EcCATI and Chl in a ternary, ligand-bound state (EcCATI:S-Et-CoA:Chl). Using collision-induced unfolding (CIU)-IMS-MS, we find that Chl dissociates from EcCATI:S-Et-CoA:Chl complexes at low collision energies, while S-Et-CoA remains bound to EcCATI even as protein unfolding occurs. Gas-phase binding constants further suggest that EcCATI binds S-Et-CoA more tightly than Chl. Both ligands exhibit negative cooperativity of subsequent ligand binding in their respective binary complexes. While we observe no significant change in structure or stability to EcCATI when bound to either or both ligands, we have elucidated novel gas-phase unfolding and dissociation behavior and provided a foundation for further characterization of alternative substrates and/or inhibitors of EcCATI.
Collapse
Affiliation(s)
- Alexis N Edwards
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Anthony J Blue
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Jessica M Conforti
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Michael S Cordes
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
3
|
Zienkiewicz M, Krupnik T, Drożak A, Golke A, Romanowska E. Transformation of the Cyanidioschyzon merolae chloroplast genome: prospects for understanding chloroplast function in extreme environments. PLANT MOLECULAR BIOLOGY 2017; 93:171-183. [PMID: 27796719 PMCID: PMC5243890 DOI: 10.1007/s11103-016-0554-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/22/2016] [Indexed: 05/06/2023]
Abstract
We have successfully transformed an exthemophilic red alga with the chloramphenicol acetyltransferase gene, rendering this organism insensitive to its toxicity. Our work paves the way to further work with this new modelorganism. Here we report the first successful attempt to achieve a stable, under selectable pressure, chloroplast transformation in Cyanidioschizon merolae-an extremophilic red alga of increasing importance as a new model organism. The following protocol takes advantage of a double homologous recombination phenomenon in the chloroplast, allowing to introduce an exogenous, selectable gene. For that purpose, we decided to use chloramphenicol acetyltransferase (CAT), as chloroplasts are particularly vulnerable to chloramphenicol lethal effects (Zienkiewicz et al. in Protoplasma, 2015, doi: 10.1007/s00709-015-0936-9 ). We adjusted two methods of DNA delivery: the PEG-mediated delivery and the biolistic bombardment based delivery, either of these methods work sufficiently with noticeable preference to the former. Application of a codon-optimized sequence of the cat gene and a single colony selection yielded C. merolae strains, capable of resisting up to 400 µg/mL of chloramphenicol. Our method opens new possibilities in production of site-directed mutants, recombinant proteins and exogenous protein overexpression in C. merolae-a new model organism.
Collapse
Affiliation(s)
- Maksymilian Zienkiewicz
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Tomasz Krupnik
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Drożak
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Golke
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096, Warsaw, Poland
| | - Elżbieta Romanowska
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096, Warsaw, Poland
| |
Collapse
|
4
|
Agarwal V, Diethelm S, Ray L, Garg N, Awakawa T, Dorrestein PC, Moore BS. Chemoenzymatic Synthesis of Acyl Coenzyme A Substrates Enables in Situ Labeling of Small Molecules and Proteins. Org Lett 2015; 17:4452-5. [PMID: 26333306 DOI: 10.1021/acs.orglett.5b02113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A chemoenzymatic approach to generate fully functional acyl coenzyme A molecules that are then used as substrates to drive in situ acyl transfer reactions is described. Mass spectrometry based assays to verify the identity of acyl coenzyme A enzymatic products are also illustrated. The approach is responsive to a diverse array of carboxylic acids that can be elaborated to their corresponding coenzyme A thioesters, with potential applications in wide-ranging chemical biology studies that utilize acyl coenzyme A substrates.
Collapse
Affiliation(s)
| | | | | | | | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , Tokyo 113-0033, Japan
| | | | | |
Collapse
|
5
|
Biswas T, Houghton JL, Garneau-Tsodikova S, Tsodikov OV. The structural basis for substrate versatility of chloramphenicol acetyltransferase CATI. Protein Sci 2012; 21:520-30. [PMID: 22294317 PMCID: PMC3375752 DOI: 10.1002/pro.2036] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/12/2012] [Accepted: 01/24/2012] [Indexed: 01/07/2023]
Abstract
Novel antibiotics are needed to overcome the challenge of continually evolving bacterial resistance. This has led to a renewed interest in mechanistic studies of once popular antibiotics like chloramphenicol (CAM). Chloramphenicol acetyltransferases (CATs) are enzymes that covalently modify CAM, rendering it inactive against its target, the ribosome, and thereby causing resistance to CAM. Of the three major types of CAT (CAT(I-III)), the CAM-specific CAT(III) has been studied extensively. Much less is known about another clinically important type, CAT(I). In addition to inactivating CAM and unlike CAT(III), CAT(I) confers resistance to a structurally distinct antibiotic, fusidic acid. The origin of the broader substrate specificity of CAT(I) has not been fully elucidated. To understand the substrate binding features of CAT(I), its crystal structures in the unbound (apo) and CAM-bound forms were determined. The analysis of these and previously determined CAT(I)-FA and CAT(III)-CAM structures revealed interactions responsible for CAT(I) binding to its substrates and clarified the broader substrate preference of CAT(I) compared to that of CAT(III).
Collapse
Affiliation(s)
- Tapan Biswas
- Department of Medicinal Chemistry, University of MichiganAnn Arbor, Michigan 48109
| | - Jacob L Houghton
- Department of Medicinal Chemistry, University of MichiganAnn Arbor, Michigan 48109
- Life Sciences Institute, University of MichiganAnn Arbor, Michigan 48109-2216
| | - Sylvie Garneau-Tsodikova
- Department of Medicinal Chemistry, University of MichiganAnn Arbor, Michigan 48109
- Life Sciences Institute, University of MichiganAnn Arbor, Michigan 48109-2216
| | - Oleg V Tsodikov
- Department of Medicinal Chemistry, University of MichiganAnn Arbor, Michigan 48109
| |
Collapse
|
6
|
4-O-acetylation and 3-O-acetylation of trichothecenes by trichothecene 15-O-acetyltransferase encoded by Fusarium Tri3. Biosci Biotechnol Biochem 2008; 72:2485-9. [PMID: 18776660 DOI: 10.1271/bbb.80501] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the biosynthesis of Fusarium trichothecenes, the C-3 hydroxyl group of isotrichodermol must be acetylated by TRI101 for subsequent pathway genes to function. Despite the importance of this 3-O-acetylation step in biosynthesis, Tri101 is both physically and evolutionarily unrelated to other Tri genes in the trichothecene gene cluster. To gain insight into the evolutionary history of the cluster, we purified recombinant TRI3 (rTRI3), one of the two cluster gene-encoded trichothecene O-acetyltransferases, and examined to determine whether this 15-O-acetyltransferase can add an acetyl to the C-3 hydroxyl group of isotrichodermol. When a high concentration of rTRI3 was used in the assay (final concentration, 50 microM), we observed 3-O-acetylation activity against isotrichodermol that was more than 10(5) times less efficient than the known 15-O-acetylation activity against 15-deacetylcalonectrin. The rTRI3 protein also exhibited 4-O-acetylation activity when nivalenol was used as a substrate; in addition to 15-acetylnivalenol, di-acetylated derivatives, 4,15-diacetylnivalenol, and, to a lesser extent, 3,15-diacetylnivalenol, were also detected at high enzyme concentrations. The significance of the trace trichothecene 3-O-acetyltransferase activity detected in rTRI3 is discussed in relation to the evolution of the trichothecene gene cluster.
Collapse
|
7
|
Allen NE. Biochemical mechanisms of resistance to non-cell wall antibacterial agents. PROGRESS IN MEDICINAL CHEMISTRY 1995; 32:157-238. [PMID: 8577918 DOI: 10.1016/s0079-6468(08)70454-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- N E Allen
- Infectious Disease Research, Eli Lilly and Company, Indianapolis, IN 46285, USA
| |
Collapse
|
8
|
Karnik SS, Ridge KD, Bhattacharya S, Khorana HG. Palmitoylation of bovine opsin and its cysteine mutants in COS cells. Proc Natl Acad Sci U S A 1993; 90:40-4. [PMID: 8419942 PMCID: PMC45595 DOI: 10.1073/pnas.90.1.40] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Previously, bovine rhodopsin has been shown to be palmitoylated at cysteine residues 322 and 323. Here we report on palmitoylation of bovine opsin in COS-1 cells following expression of the synthetic wild-type opsin gene and several of its cysteine mutants in the presence of [3H]palmitic acid. Two moles of palmitic acid are introduced per wild-type opsin molecule in thioester linkages. Palmitoylation is abolished when both Cys-322 and Cys-323 are replaced by serine residues. Replacement of Cys-322 by serine prevents palmitoylation at Cys-323, whereas replacement of the latter with serine allows palmitoylation at Cys-322. Opsin mutants that evidently do not contain a Cys-110/Cys-187 disulfide bond and presumably remain in the endoplasmic reticulum are not palmitoylated. Replacement of Cys-140 or Cys-185 reduces the extent of palmitoylation of the opsin. Lack of palmitoylation at Cys-322 and/or Cys-323 does not affect 11-cis-retinal binding, absorption maximum or extinction coefficient of the chromophore, the bleaching behavior of the chromophore, or the light-dependent binding and activation of transducin. Mutants containing serine substitutions at Cys-140 or Cys-323 showed reduced light-dependent phosphorylation by rhodopsin kinase.
Collapse
Affiliation(s)
- S S Karnik
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
9
|
Kleanthous C, Shaw WV. Analysis of the mechanism of chloramphenicol acetyltransferase by steady-state kinetics. Evidence for a ternary-complex mechanism. Biochem J 1984; 223:211-20. [PMID: 6594136 PMCID: PMC1144282 DOI: 10.1042/bj2230211] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The mechanism of the enzymic reaction responsible for chloramphenicol resistance in bacteria was examined by steady-state kinetic methods. The forward reaction catalysed by chloramphenicol acetyltransferase leads to inactivation of the antibiotic. Use of alternative acyl donors and acceptors, as well as the natural substrates, has yielded data that favour the view that the reaction proceeds to the formation of a ternary complex by a rapid-equilibrium mechanism wherein the addition of substrates may be random but a preference for acetyl-CoA as the leading substrate can be detected. Chloramphenicol and acetyl-CoA bind independently, but the correlation between directly determined and kinetically derived dissociation constants is imperfect because of an unreliable slope term in the rate equation. The reverse reaction, yielding acetyl-CoA and chloramphenicol, was studied in a coupled assay involving citrate synthase and malate dehydrogenase, and is best described by a rapid-equilibrium mechanism with random addition of substrates. The directly determined dissociation constant for CoA is in agreement with that derived from kinetic measurements under the assumption of an independent-sites model.
Collapse
|
10
|
Shaw WV. Chloramphenicol acetyltransferase: enzymology and molecular biology. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1983; 14:1-46. [PMID: 6340955 DOI: 10.3109/10409238309102789] [Citation(s) in RCA: 185] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Naturally occurring chloramphenicol resistance in bacteria is normally due to the presence of the antibiotic inactivating enzyme chloramphenicol acetyltransferase (CAT) which catalyzes the acetyl-S-CoA-dependent acetylation of chloramphenicol at the 3-hydroxyl group. The product 3-acetoxy chloramphenicol does not bind to bacterial ribosomes and is not an inhibitor of peptidyltransferase. The synthesis of CAT is constitutive in E. coli and other Gram-negative bacteria which harbor plasmids bearing the structural gene for the enzyme, whereas Gram-positive bacteria such as staphylococci and streptococci synthesize CAT only in the presence of chloramphenicol and related compounds, especially those with the same stereochemistry of the parent compound and which lack antibiotic activity and a site of acetylation (3-deoxychloramphenicol). Studies of the primary structures of CAT variants suggest a marked degree of heterogeneity but conservation of amino acid sequence at and near the putative active site. All CAT variants are tetramers composed in each case of identical polypeptide subunits consisting of approximately 220 amino acids. The catalytic mechanism does not appear to involve an acyl-enzyme intermediate although one or more cysteine residues are protected from thiol reeagents by substrates. A highly reactive histidine residue has been implicated in the catalytic mechanism.
Collapse
|
11
|
Chapter 13. Mechanisms of Antibiotic Resistance. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1982. [DOI: 10.1016/s0065-7743(08)60495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|