Municio AM, Odriozola JM, Pérez-Albarsanz MA. Biochemistry of development in insects. Incorporation of fatty acids into different lipid classes.
EUROPEAN JOURNAL OF BIOCHEMISTRY 1975;
60:123-8. [PMID:
1204633 DOI:
10.1111/j.1432-1033.1975.tb20983.x]
[Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. To study the different metabolic behaviour of various stages of development of the insect Ceratitis capitata, the incorporation of labelled decanoic, lauric, myristic, palmitic, stearic, oleic, and linoleic acids into triacylglycerols by insect homogenates was investigated. The time-course of incorporation of labelled fatty acids was firstly studied by using oleic acid; it showed that after 10 min of incubation the levels of radioactivity incorporated into triacylglycerols and those remaining in the free fatty acids were practically unchanged. 2. All labelled fatty acids were efficiently incorporated by larval homogenates; however, most of the radioactivity remained as free fatty acids in the presence of pharate adult homogenates, palmitic, and stearic acids being the most scarcely incorporated by this stage of development of the insect. 3. Plots of triacylglycerol and free fatty acid radioactivites versus the stage of development defined a crossing-zone in coincidence with the larval-pupal apolysis. This metabolic difference between larval and pharate adult homogenates could not be explained through differences in the acyl-CoA synthetase activity of the insect; this enzyme activity was notably higher in pharate adult homogenates than in the larval homogenates whatever would be the nature of the fatty acid. 4. [14C]Triolein was scarcely hydrolyzed by both larval and pharate adult homogenates. 5. Double-label experiments were carried out by incorporating either [3H]oleic acid or [3H]-palmitic acid and [14C]glycerol 3-phosphate by larval and pharate adult homogenates at different incubation intervals. Diacylglycerols, triacylglycerols, and phosphoglycerides were isolated and the 14C/3H molar ratio calculated. Results suggest the existence of a different acyltransferase activity in the different stages of development of the insect.
Collapse