1
|
Lepesheva GI, Villalta F, Waterman MR. Targeting Trypanosoma cruzi sterol 14α-demethylase (CYP51). ADVANCES IN PARASITOLOGY 2011; 75:65-87. [PMID: 21820552 DOI: 10.1016/b978-0-12-385863-4.00004-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There are at least two obvious features that must be considered upon targeting specific metabolic pathways/enzymes for drug development: the pathway must be essential and the enzyme must allow the design of pharmacologically useful inhibitors. Here, we describe Trypanosoma cruzi sterol 14α-demethylase as a promising target for anti-Chagasic chemotherapy. The use of anti-fungal azoles, which block sterol biosynthesis and therefore membrane formation in fungi, against the protozoan parasite has turned out to be highly successful: a broad spectrum anti-fungal drug, the triazole compound posaconazole, is now entering phase II clinical trials for treatment of Chagas disease. This review summarizes comparative information on anti-fungal azoles and novel inhibitory scaffolds selective for Trypanosomatidae sterol 14α-demethylase through the lens of recent structure/functional characterization of the target enzyme. We believe our studies open wide opportunities for rational design of novel, pathogen-specific and therefore more potent and efficient anti-trypanosomal drugs.
Collapse
Affiliation(s)
- Galina I Lepesheva
- Department of Biochemistry School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | | | | |
Collapse
|
2
|
CYP51: A major drug target in the cytochrome P450 superfamily. Lipids 2008; 43:1117-25. [PMID: 18769951 DOI: 10.1007/s11745-008-3225-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 08/08/2008] [Indexed: 10/21/2022]
Abstract
The cytochrome P540 (CYP) superfamily currently includes about 9000 proteins forming more than 800 families. The enzymes catalyze monooxygenation of a vast array of compounds and play essentially two roles. They provide biodefense (detoxification of xenobiotics, antibiotic production) and participate in biosynthesis of important endogenous molecules, particularly steroids. Based on these two roles, sterol 14/*alpha*/-demethylases (CYP51) belong to the second group of P450s. The CYP51 family, however, is very special as its members preserve strict functional conservation in enzyme activity in all biological kingdoms. At amino acid identity across the kingdoms as low as 25-30%, they all catalyze essentially the same three-step reaction of oxidative removal of the 14/*alpha*/-methyl group from the lanostane frame. This reaction is the required step in sterol biosynthesis of pathogenic microbes. We have shown that specific inhibition of protozoan CYP51 can potentially provide treatment for human trypanosomiases. Three sets of CYP51 inhibitors tested in vitro and in trypanosomal cells in this study include azoles [best results being 50% cell growth inhibition at <1 and at 1.3 muM for Trypanosoma cruzi (TC) and Trypanosoma brucei (TB), respectively], non-azole compounds (50% TC cell growth inhibition at 5 microM) and substrate analogs of the 14/*alpha*/-demethylase reaction. 32-Methylene cyclopropyl lanost-7-enol exhibited selectivity toward TC with 50% cell growth inhibition at 3 microM.
Collapse
|
3
|
Ekins S, Mankowski DC, Hoover DJ, Lawton MP, Treadway JL, Harwood HJ. Three-dimensional quantitative structure-activity relationship analysis of human CYP51 inhibitors. Drug Metab Dispos 2006; 35:493-500. [PMID: 17194716 DOI: 10.1124/dmd.106.013888] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP51 fulfills an essential requirement for all cells, by catalyzing three sequential mono-oxidations within the cholesterol biosynthesis cascade. Inhibition of fungal CYP51 is used as a therapy for treating fungal infections, whereas inhibition of human CYP51 has been considered as a pharmacological approach to treat dyslipidemia and some forms of cancer. To predict the interaction of inhibitors with the active site of human CYP51, a three-dimensional quantitative structure-activity relationship model was constructed. This pharmacophore model of the common structural features of CYP51 inhibitors was built using the program Catalyst from multiple inhibitors (n = 26) of recombinant human CYP51-mediated lanosterol 14alpha-demethylation. The pharmacophore, which consisted of one hydrophobe, one hydrogen bond acceptor, and two ring aromatic features, demonstrated a high correlation between observed and predicted IC(50) values (r = 0.92). Validation of this pharmacophore was performed by predicting the IC(50) of a test set of commercially available (n = 19) and CP-320626-related (n = 48) CYP51 inhibitors. Using predictions below 10 microM as a cutoff indicative of active inhibitors, 16 of 19 commercially available inhibitors (84%) and 38 of 48 CP-320626-related inhibitors (79.2%) were predicted correctly. To better understand how inhibitors fit into the enzyme, potent CYP51 inhibitors were used to build a Cerius(2) receptor surface model representing the volume of the active site. This study has demonstrated the potential for ligand-based computational pharmacophore modeling of human CYP51 and enables a high-throughput screening system for drug discovery and data base mining.
Collapse
Affiliation(s)
- Sean Ekins
- Computational Biology, ACT LLC, 601 Runnymede Ave., Jenkintown, PA 19046, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Lepesheva GI, Waterman MR. Sterol 14alpha-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim Biophys Acta Gen Subj 2006; 1770:467-77. [PMID: 16963187 PMCID: PMC2324071 DOI: 10.1016/j.bbagen.2006.07.018] [Citation(s) in RCA: 318] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 07/21/2006] [Accepted: 07/31/2006] [Indexed: 11/22/2022]
Abstract
The CYP51 family is an intriguing subject for fundamental P450 structure/function studies and is also an important clinical drug target. This review updates information on the variety of the CYP51 family members, including their physiological roles, natural substrates and substrate preferences, and catalytic properties in vitro. We present experimental support for the notion that specific conserved regions in the P450 sequences represent a CYP51 signature. Two possible roles of CYP51 in P450 evolution are discussed and the major approaches for CYP51 inhibition are summarized.
Collapse
Affiliation(s)
- Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | |
Collapse
|
5
|
Lepesheva GI, Zaitseva NG, Nes WD, Zhou W, Arase M, Liu J, Hill GC, Waterman MR. CYP51 from Trypanosoma cruzi: a phyla-specific residue in the B' helix defines substrate preferences of sterol 14alpha-demethylase. J Biol Chem 2005; 281:3577-85. [PMID: 16321980 DOI: 10.1074/jbc.m510317200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A potential drug target for treatment of Chagas disease, sterol 14alpha-demethylase from Trypanosoma cruzi (TCCYP51), was found to be catalytically closely related to animal/fungi-like CYP51. Contrary to the ortholog from Trypanosoma brucei (TB), which like plant CYP51 requires C4-monomethylated sterol substrates, TCCYP51 prefers C4-dimethylsterols. Sixty-six CYP51 sequences are known from bacteria to human, their sequence homology ranging from approximately 25% between phyla to approximately 80% within a phylum. TC versus TB is the first example of two organisms from the same phylum, in which CYP51s (83% amino acid identity) have such profound differences in substrate specificity. Substitution of animal/fungi-like Ile105 in the B' helix to Phe, the residue found in this position in all plant and the other six CYP51 sequences from Trypanosomatidae, dramatically alters substrate preferences of TCCYP51, converting it into a more plant-like enzyme. The rates of 14alpha-demethylation of obtusifoliol and its 24-demethyl analog 4alpha-,4alpha-dimethylcholesta-8,24-dien-3beta-ol(norlanosterol) increase 60- and 150-fold, respectively. Turnover of the three 4,4-dimethylated sterol substrates is reduced approximately 3.5-fold. These catalytic properties correlate with the sterol binding parameters, suggesting that Phe in this position provides necessary interactions with C4-monomethylated substrates, which Ile cannot. The CYP51 substrate preferences imply differences in the post-squalene portion of sterol biosynthesis in TC and TB. The phyla-specific residue can be used to predict preferred substrates of new CYP51 sequences and subsequently for the development of new artificial substrate analogs, which might serve as highly specific inhibitors able to kill human parasites.
Collapse
Affiliation(s)
- Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Oxygenated derivatives of cholesterol (oxysterols) present a remarkably diverse profile of biological activities, including effects on sphingolipid metabolism, platelet aggregation, apoptosis, and protein prenylation. The most notable oxysterol activities center around the regulation of cholesterol homeostasis, which appears to be controlled in part by a complex series of interactions of oxysterol ligands with various receptors, such as the oxysterol binding protein, the cellular nucleic acid binding protein, the sterol regulatory element binding protein, the LXR nuclear orphan receptors, and the low-density lipoprotein receptor. Identification of the endogenous oxysterol ligands and elucidation of their enzymatic origins are topics of active investigation. Except for 24, 25-epoxysterols, most oxysterols arise from cholesterol by autoxidation or by specific microsomal or mitochondrial oxidations, usually involving cytochrome P-450 species. Oxysterols are variously metabolized to esters, bile acids, steroid hormones, cholesterol, or other sterols through pathways that may differ according to the type of cell and mode of experimentation (in vitro, in vivo, cell culture). Reliable measurements of oxysterol levels and activities are hampered by low physiological concentrations (approximately 0.01-0.1 microM plasma) relative to cholesterol (approximately 5,000 microM) and by the susceptibility of cholesterol to autoxidation, which produces artifactual oxysterols that may also have potent activities. Reports describing the occurrence and levels of oxysterols in plasma, low-density lipoproteins, various tissues, and food products include many unrealistic data resulting from inattention to autoxidation and to limitations of the analytical methodology. Because of the widespread lack of appreciation for the technical difficulties involved in oxysterol research, a rigorous evaluation of the chromatographic and spectroscopic methods used in the isolation, characterization, and quantitation of oxysterols has been included. This review comprises a detailed and critical assessment of current knowledge regarding the formation, occurrence, metabolism, regulatory properties, and other activities of oxysterols in mammalian systems.
Collapse
Affiliation(s)
- G J Schroepfer
- Departments of Biochemistry, Rice University, Houston, Texas, USA.
| |
Collapse
|
7
|
Abstract
Material dealing with the chemistry, biochemistry, and biological activities of oxysterols is reviewed for the period 1987-1995. Particular attention is paid to the presence of oxysterols in tissues and foods and to their physiological relevance.
Collapse
Affiliation(s)
- L L Smith
- University of Texas Medical Branch, Galveston 77555-0653, USA
| |
Collapse
|
8
|
Frye LL, Cusack KP, Leonard DA, Anderson JA. Oxolanosterol oximes: dual-action inhibitors of cholesterol biosynthesis. J Lipid Res 1994. [DOI: 10.1016/s0022-2275(20)40075-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Aoyama Y, Yoshida Y, Sonoda Y, Sato Y. Structural analysis of the interaction between the side-chain of substrates and the active site of lanosterol 14 alpha-demethylase (P-450(14)DM) of yeast. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1122:251-5. [PMID: 1504086 DOI: 10.1016/0167-4838(92)90400-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The role of the side-chain of lanosterol in the enzyme-substrate interaction of yeast P-450(14)DM (lanosterol 14 alpha-demethylase) was analyzed with lanosterol derivatives having functional groups on the side-chain. Purified P-450(14)DM from Saccharomyces cerevisiae catalyzed 14 alpha-demethylation of 26-hydroxylanosterol and 25-hydroxy-24,25-dihydrolanosterol with a lower activity than lanosterol and 24,25-dihydrolanosterol. This enzyme demethylated the (Z)-24-ethylidene-24,25-dihydrolanosterol with a low rate, but did not metabolize the E-isomer. The apparent Km of 26-hydroxylanosterol was 10.8 microM, which was higher than that of lanosterol, but lower than that of 24,25-dihydrolanosterol. On the other hand, competition experiments suggested that the affinity of 25-hydroxy-24,25-dihydrolanosterol and (Z)-24-ethylidene-24,25-dihydrolanosterol for P-450(14)DM was significantly lower than that of 24,25-dihydrolanosterol. Integration of the present results with the preceding ones (Aoyama, Y., Yoshida, Y., Sonoda, Y. and Sato, Y. (1991) Biochim. Biophys. Acta, 1081, 262-266 and Aoyama, Y. and Yoshida, Y. (1991) Biochem. Biophys. Res. Commun., 178, 1064-1071) suggests that yeast P-450(14)DM recognizes two parts of the side-chain, the structure around C-24 and the terminal fork consisting of C-25, C-26 and C-27.
Collapse
Affiliation(s)
- Y Aoyama
- Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | | | | | | |
Collapse
|
10
|
Rahier A, Taton M. Plant sterol biosynthesis: 7-oxo-obtusifoliol analogues as potential selective inhibitors of cytochrome P-450 dependent obtusifoliol 14 alpha-demethylase. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1125:215-22. [PMID: 1571366 DOI: 10.1016/0005-2760(92)90048-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A series of 7-oxo-obtusifoliol analogues have been synthetized and investigated as potential inhibitors of cytochrome P-450 dependent obtusifoliol 14 alpha-demethylase (P-450OBT.14DM) from higher plant microsomes. 7-Oxo-24 xi(24')-dihydro-obtusifoliol and 7-oxo-24(25)-dihydro-29-nor-lanosterol were potent competitive inhibitors for P-450OBT.14DM, binding 125-200 times more tightly than the substrates obtusifoliol and 24(25)-dihydro-29-nor-lanosterol. Inhibition of P-450OBT.14DM by these analogues showed strict structural requirements including the 8-en-7-one system which was compulsory for binding. 7-Oxo-24(25)-dihydro-lanosterol possessing an additional 4 beta-methyl substituent, did not have such inhibitory effects. Treatment of cultures of suspended bramble cells with 7-oxo-24(25)-dihydro-29-nor-lanosterol resulted in a strong decrease of [14C]acetate incorporation into the demethylsterols fraction and in an accumulation of [14C]obtusifoliol. This confirms that P-450OBT.14DM is the main in vivo target of 7-oxo-24(25)-dihydro-29-nor-lanosterol in the sterol-biosynthetic pathway.
Collapse
Affiliation(s)
- A Rahier
- Institut de Biologie Moléculaire des Plantes, Département d'Enzymologie Cellulaire et Moléculaire, Strasbourg, France
| | | |
Collapse
|
11
|
Aoyama Y, Yoshida Y. The 4 beta-methyl group of substrate does not affect the activity of lanosterol 14 alpha-demethylase (P-450(14)DM) of yeast: difference between the substrate recognition by yeast and plant sterol 14 alpha-demethylases. Biochem Biophys Res Commun 1992; 183:1266-72. [PMID: 1567403 DOI: 10.1016/s0006-291x(05)80327-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Interaction of obtusifoliol and 24,28-dihydroobtusifoliol with yeast lanosterol 14 alpha-demethylase (P-450(14)DM) was studied to elucidate the role of the 4 beta-methyl group of substrate. P-450(14)DM of Saccharomyces cerevisiae catalyzed 14 alpha-demethylation of obtusifoliol. Apparent Vmax of obtusifoliol demethylation (15.4 nmol/min/nmol P-450) was similar to that of 24-methylene-24,25-dihydrolanosterol demethylation and was a little higher than those of lanosterol and 24,25-dihydrolanosterol demethylations. Apparent Km for obtusifoliol (12.0 microM) was higher than those for lanosterol and 24-methylene-24,25-dihydrolanosterol but was lower than that for 24,25-dihydrolanosterol. 24,28-Dihydroobtusifoliol was a very poor substrate for yeast P-450(14)DM. These facts suggest that the 4 beta-methyl group of sterol slightly affects the activity of yeast P-450(14)DM, while hydrogenation of a double bond in the sterol side-chain considerably impairs the activity. This finding is a contrast to the fact that the plant P-450(14)DM could not catalyze demethylation of sterols having 4 beta-methyl group, but favorably interacts with sterols having saturated side chain.
Collapse
Affiliation(s)
- Y Aoyama
- Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | | |
Collapse
|
12
|
Aoyama Y, Yoshida Y, Sonoda Y, Sato Y. Role of the side chain of lanosterol in substrate recognition and catalytic activity of lanosterol 14 alpha-demethylase (cytochrome P-450 (14DM)) of yeast. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1081:262-6. [PMID: 1998745 DOI: 10.1016/0005-2760(91)90280-u] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The 14 alpha-demethylation of 24,25-dihydrolanosterol (DHL) derivatives having trimmed side chains, 27-nor-DHL, 26,27-dinor-DHL, 25,26,27-trinor-DHL, 24,25,26,27-tetranor-DHL, 23,24,25,26,27-pentanor-DHL and 22,23,24,25,26,27-hexanor-DHL, was studied with the reconstituted lanosterol 14 alpha-demethylase system consisting of cytochrome P-450(14DM) and NADPH-cytochrome P-450 reductase both purified from yeast microsomes. The demethylase catalyzed the 14 alpha-demethylation of the derivatives having the side chains longer than tetranor but the activities for the trinor- and tetranor-derivatives were lower. Kinetic analysis indicated that affinity of the trinor-derivative for the demethylase was considerably higher than that of DHL. The affinities of the 27-nor- and dinor-derivatives were increased by this order and were the intermediates of DHL and the trinor derivative. On the other hand, Vmax values of the demethylase for the DHL derivatives were decreased depending on their side-chain lengths, and the substrate-dependent reduction rate of cytochrome P-450(14DM) was also decreased in the same manner. Based on these observations, it was concluded that interaction of the side chain of lanosterol especially C-25, 26 and 27 with the substrate site of lanosterol 14 alpha-demethylase was necessary for enhancing the catalytic activity of the enzyme. However, this interaction was considered not to be essential for substrate binding.
Collapse
Affiliation(s)
- Y Aoyama
- Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya Japan
| | | | | | | |
Collapse
|
13
|
Yoshida Y, Aoyama Y. Stereoselective interaction of an azole antifungal agent with its target, lanosterol 14 alpha-demethylase (cytochrome P-45014DM): a model study with stereoisomers of triadimenol and purified cytochrome P-45014DM from yeast. Chirality 1990; 2:10-5. [PMID: 2205265 DOI: 10.1002/chir.530020103] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effect of the four triadimenol stereoisomers on the purified yeast lanosterol 14 alpha-demethylase (cytochrome P-45014DM), the primary target of azole antifungal agents, was studied. (1S,2R)-Triadimenol was the most potent demethylase inhibitor and bound quantitatively to the enzyme below 0.05 microM. This isomer also interfered with the chemical reduction of cytochrome P-45014DM and the binding of CO to the cytochrome. The other isomers showed a lower inhibitory effect on the enzyme, and the order of activity was (1R,2R) greater than (1R,2S) greater than or equal to (1S,2S). Based on these findings and the reported preferred conformations for the triadimenol stereoisomers (Anderson, N.H. et al., Pestic. Sci. 15:310-316, 1984), it is predicted that orientation of the hydrophobic tert-butyl and p-chlorophenyl groups relative to the azole nitrogen is important to fit the antifungal agent in the active site of the demethylase.
Collapse
Affiliation(s)
- Y Yoshida
- Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | | |
Collapse
|
14
|
Aoyama Y, Yoshida Y, Sonoda Y, Sato Y. The 3-hydroxy group of lanosterol is essential for orienting the substrate site of cytochrome P-450(14DM) (lanosterol 14 alpha- demethylase). BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1006:209-13. [PMID: 2688742 DOI: 10.1016/0005-2760(89)90198-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Interaction of lanosterol, 3-epilanosterol, 3-oxolanosta-8,24-diene, 3-methylenelanost-8-ene and lanosterol acetate with cytochrome P-450(14DM) were studied. The cytochrome mediated the 14alpha-demethylation of 3-epilanosterol with nearly the same activity as lanosterol but could not mediate the 14alpha-demethylation of the 3-methylene derivative and the 3-acetate. The cytochrome catalyzed the 14alpha-demethylation of the 3-oxo derivative with low rate. Based on these and some additional observations the hydrogen bond formation between the 3-hydroxy group of lanosterol and the specific amino acid residue in the substrate site is assumed to be essential for orienting the substrate in the substrate site of the cytochrome.
Collapse
Affiliation(s)
- Y Aoyama
- Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | | | | | | |
Collapse
|