1
|
Zhang Z, Lin W, Gan Q, Lei M, Gong B, Zhang C, Henrique JS, Han J, Tian H, Tao Q, Potempa LA, Stein TD, Emili A, Qiu WQ. The influences of ApoE isoforms on endothelial adherens junctions and actin cytoskeleton responding to mCRP. Angiogenesis 2024; 27:861-881. [PMID: 39276310 PMCID: PMC11564276 DOI: 10.1007/s10456-024-09946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024]
Abstract
Apolipoprotein E4 (ApoE4) plays an important role responding to monomeric C-reactive protein (mCRP) via binding to CD31 leading to cerebrovascular damage and Alzheimer's disease (AD). Using phosphor-proteomic profiling, we found altered cytoskeleton proteins in the microvasculature of AD brains, including increased levels of hyperphosphorylated tau (pTau) and the actin-related protein, LIMA1. To address the hypothesis that cytoskeletal changes serve as early pathological signatures linked with CD31 in brain endothelia in ApoE4 carriers, ApoE4 knock-in mice intraperitoneal injected with mCRP revealed that mCRP increased the expressions of phosphorylated CD31 (pCD31) and LIMA1, and facilitate the binding of pCD31 to LIMA1. mCRP combined with recombinant APOE4 protein decreased interaction of CD31 and VE-Cadherin at adherens junctions (AJs), along with altered the expression of various actin cytoskeleton proteins, causing microvasculature damage. Notably, the APOE2 protein attenuated these changes. Overall, our study demonstrates that ApoE4 responds to mCRP to disrupt the endothelial AJs which link with the actin cytoskeleton and this pathway could play a key role in the barrier dysfunction leading to AD risk.
Collapse
Affiliation(s)
- Zhengrong Zhang
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA
| | - Weiwei Lin
- Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA
| | - Qini Gan
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA
| | - Maohua Lei
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Chao Zhang
- Section of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA
| | - Jessica Salles Henrique
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA
| | - Jingyan Han
- Section of Vascular Biology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA
| | - Hua Tian
- Department of Pharmacology, Xiaman Medical College, Xiaman, China
| | - Qiushan Tao
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA
| | | | - Thor D Stein
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA.
- Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA.
- VA Boston Healthcare System, Boston, MA02130, USA.
- VA Bedford Healthcare System, Bedford, MA01730, USA.
| | - Andrew Emili
- Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA.
| | - Wei Qiao Qiu
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA.
- Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA.
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA.
| |
Collapse
|
2
|
McCourt PA, Smedsrød BH, Melkko J, Johansson S. Characterization of a hyaluronan receptor on rat sinusoidal liver endothelial cells and its functional relationship to scavenger receptors. Hepatology 1999; 30:1276-86. [PMID: 10534350 DOI: 10.1002/hep.510300521] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hyaluronan is a widely distributed extracellular component of connective tissue with several mechanical and cell biological functions. The serum level of hyaluronan is elevated in rheumatic and liver diseases and in certain malignancies. The major route of hyaluronan clearance from the blood is via the liver, taken up predominantly by sinusoidal liver endothelial cells. We have purified a novel hyaluronan binding protein from liver that also has an affinity for the N-terminal propeptide of type I procollagen, a physiological scavenger receptor ligand. A polyclonal antibody raised against the protein was found to inhibit the binding and degradation of hyaluronan as well as two scavenger receptor ligands by cultured sinusoidal liver endothelial cells. Immunostaining of nonpermeabilized liver cells and liver sections showed that the antibody specifically stains the surface of sinusoidal liver endothelial cells. After pretreatment with monensin to block the recirculation of endocytic receptors, the immunostaining was specifically associated with early endosomes of these cells. Thus, this rat sinusoidal liver endothelial cell hyaluronan receptor shares functional properties with the scavenger receptor family, a group of proteins shown to play a key role in the uptake of atherogenic lipids and other waste products from the tissues.
Collapse
Affiliation(s)
- P A McCourt
- Department of Experimental Pathology, University of Tromso, Tromso, Norway.
| | | | | | | |
Collapse
|
4
|
Forsberg N, Gustafson S. Characterization and purification of the hyaluronan-receptor on liver endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1078:12-8. [PMID: 1710929 DOI: 10.1016/0167-4838(91)90085-e] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In order to characterize the proteins on liver endothelial cells that bind hyaluronan (HYA), liver endothelial cells were surface-iodinated with 125I, solubilized by Triton X-100 and passed through a column containing HYA coupled to agarose. The column was washed and eluted with HYA-oligosaccharides. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the eluted material, followed by autoradiography, showed a major band with a molecular mass of 100 kDa, that upon reduction gave major bands of 20 and 35 kDa, and minor doublet bands at 60 and 80 kDa. Two-dimensional electrophoresis of liver endothelial cell membrane proteins revealed that the 100 kDa protein has a pI of 6.6-6.8. The protein was purified by preparative SDS-PAGE of liver endothelial cell membrane proteins. The 100 kDa protein was excised from the gel and used for immunization of rabbits. Antiserum from immunized rabbits specifically recognized only the 100 kDa protein on immunoblots of liver endothelial cell membrane proteins separated by SDS-PAGE. The binding of 3H-HYA to liver endothelial cells and liver endothelial cell membranes could be specifically inhibited by Fab-fragments of the antibodies. When we tried to isolate the receptor in large scale by affinity chromatography of proteins from purified liver endothelial cell membranes, the 100 kDa protein could often not be detected on immunoblots or by silver staining following SDS-PAGE of the eluted material. Instead, proteins with molecular masses of 55 and 15 kDa were detected, but the antibodies reacted specifically with these proteins. Thus the 100 kDa protein is apparently susceptible to cleavage into distinct subcomponents.
Collapse
Affiliation(s)
- N Forsberg
- Department of Medical and Physiological Chemistry, University of Uppsala, Sweden
| | | |
Collapse
|
5
|
Determination of the osmotic active drug concentration in the cytoplasm of anthracycline-resistant and -sensitive K562 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1091:29-35. [PMID: 1995065 DOI: 10.1016/0167-4889(91)90217-l] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A fluorescence method was used to follow the interaction of 4'-o-tetrahydropyranyladriamycin (THP-ADR) with drug-resistant and -sensitive K562 cells. The amounts of drug bound to the nuclei at the steady state, Cn and at the equilibrium state, CN, once the membrane has been solubilized with Triton X-100, have been determined as a function of the pH outside the cells (pHe): Cn increased and CN decreased as pHe increased. At a given pH value outside the cells, CN is the same for both sensitive and resistant cells, whereas Cn is lower in resistant cells as compared to sensitive cells. Using the observation that the essential binding characteristics of THP-ADR in nuclei are the same for both types of cell, the osmotic active drug concentration, Ci, in the cytoplasm of the cells was determined at different values of pHe. Using fluorescent dye, the cytoplasmic pH was determined and found equal to 7.2 +/- 0.1 in both types of cell. In sensitive cells, the equilibrium transmembrane concentrations verified the relation [DH+]i/[DH+]e = [H +]i/[H+]e where [DH +]i and [DH +]e stand for the concentration of protonated form of the drug inside and outside the cells, respectively. This indicates that the uptake of the drug occurs through free permeation of the neutral form of the drug in response to delta pH gradient. Such a relation is not verified in the case of resistant cells.
Collapse
|
6
|
Gustafson S, Forsberg N. Hyaluronan-binding proteins on cultured J 774 macrophages. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1091:36-40. [PMID: 1704797 DOI: 10.1016/0167-4889(91)90218-m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cultivated macrophages of murine cell-line J 774 were found to bind high-molecular-weight (molecular weight average approx. 5.10(6) [3H]hyaluronan (HA) by a saturable mechanism at 4 degrees C. Half-maximal binding was observed at 7-8 microgram/ml (1.4-1.6 nM) and the maximal binding was reached at 30-40 microgram/ml. Scatchard plot analysis revealed that approx. 20,000 molecules could bind to each cell with a Kd of 1.5 nM. The binding could be effectively inhibited by unlabeled HA. Also chondroitin sulphate inhibited the binding, but only to about 50%. At 37 degrees C the J 774 cells took up and degraded the polysaccharide effectively. Affinity chromatography on HA coupled to agarose of solubilized surface-iodinated J 774 cells, revealed that a protein of approx. 60 kDa, when analyzed by sodium dodecylsulfate polyacrylamide gel electrophoresis and autoradiography, could be specifically eluted with HA-oligosaccharides. Our results suggest that J 774 macrophages can bind HA by a mechanism compatible with receptor-binding, and carry a 60 kDa HA-binding protein on their surface. This receptor-binding may mediate uptake and degradation of the polysaccharide and influence the levels and turnover of HA in interstitial fluid as well as the release of HA into the bloodstream.
Collapse
Affiliation(s)
- S Gustafson
- Department of Medical and Physiological Chemistry, University of Uppsala, Sweden
| | | |
Collapse
|