1
|
Dang E, Man G, Lee D, Crumrine DA, Mauro TM, Elias PM, Man MQ. Mutations in 3β-hydroxysteroid-δ8, δ7-isomerase paradoxically benefit epidermal permeability barrier homeostasis in mice. Exp Dermatol 2020; 30:384-389. [PMID: 33205489 DOI: 10.1111/exd.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 11/27/2022]
Abstract
Inherited or acquired blockade of distal steps in the cholesterol synthetic pathway results in ichthyosis, due to reduced cholesterol production and/or the accumulation of toxic metabolic precursors, while inhibition of epidermal cholesterol synthesis compromises epidermal permeability barrier homeostasis. We showed here that 3β-hydroxysteroid-δ8, δ7-isomerase-deficient mice (TD), an analog for CHILD syndrome in humans, exhibited not only lower basal transepidermal water loss rates, but also accelerated permeability barrier recovery despite the lower expression levels of mRNA for epidermal differentiation marker-related proteins and lipid synthetic enzymes. Moreover, TD mice displayed low skin surface pH, paralleled by increased expression levels of mRNA for sodium/hydrogen exchanger 1 (NHE1) and increased antimicrobial peptide expression, compared with wild-type (WT) mice, which may compensate for the decreased differentiation and lipid synthesis. Additionally, in comparison with WT controls, TD mice showed a significant reduction in ear thickness following challenges with either phorbol ester or oxazolone. However, TD mice exhibited growth retardation. Together, these results demonstrate that 3β-hydroxysteroid-δ8, δ7-isomerase deficiency does not compromise epidermal permeability barrier in mice, suggesting that alterations in epidermal function depend on which step of the cholesterol synthetic pathway is interrupted. But whether these findings in mice could be mirrored in humans remains to be determined.
Collapse
Affiliation(s)
- Erle Dang
- Dermatology Services, Veterans Affairs Medical Center, University of California San Francisco, CA, USA.,Department of Dermatology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - George Man
- Dermatology Services, Veterans Affairs Medical Center, University of California San Francisco, CA, USA
| | - Dale Lee
- Dermatology Services, Veterans Affairs Medical Center, University of California San Francisco, CA, USA
| | - Debbie A Crumrine
- Dermatology Services, Veterans Affairs Medical Center, University of California San Francisco, CA, USA
| | - Theodora M Mauro
- Dermatology Services, Veterans Affairs Medical Center, University of California San Francisco, CA, USA
| | - Peter M Elias
- Dermatology Services, Veterans Affairs Medical Center, University of California San Francisco, CA, USA
| | - Mao-Qiang Man
- Dermatology Services, Veterans Affairs Medical Center, University of California San Francisco, CA, USA
| |
Collapse
|
2
|
Lin T, Man M, Abuabara K, Wakefield JS, Sheu H, Tsai J, Lee C, Elias PM. By protecting against cutaneous inflammation, epidermal pigmentation provided an additional advantage for ancestral humans. Evol Appl 2019; 12:1960-1970. [PMID: 31700538 PMCID: PMC6824065 DOI: 10.1111/eva.12858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/30/2019] [Accepted: 08/14/2019] [Indexed: 12/30/2022] Open
Abstract
Pigmentation evolved in ancestral humans to protect against toxic, ultraviolet B irradiation, but the question remains: "what is being protected?" Because humans with dark pigmentation display a suite of superior epidermal functions in comparison with their more lightly pigmented counterparts, we hypothesized and provided evidence that dark pigmentation evolved in Africa to support cutaneous function. Because our prior clinical studies also showed that a restoration of a competent barrier dampens cutaneous inflammation, we hypothesized that resistance to inflammation could have provided pigmented hominins with yet another, important evolutionary benefit. We addressed this issue here in two closely related strains of hairless mice, endowed with either moderate (Skh2/J) or absent (Skh1) pigmentation. In these models, we showed that (a) pigmented mice display a markedly reduced propensity to develop inflammation after challenges with either a topical irritant or allergen in comparison with their nonpigmented counterparts; (b) visible and histologic evidence of inflammation was paralleled by reduced levels of pro-inflammatory cytokines (i.e., IL-1α and INFα); (c) because depigmentation of Skh2/J mouse skin enhanced both visible inflammation and pro-inflammatory cytokine levels after comparable pro-inflammatory challenges, the reduced propensity to develop inflammation was directly linked to the presence of pigmentation; and (d) furthermore, in accordance with our prior work showing that pigment production endows benefits by reducing the surface pH of skin, acidification of albino (Skh1) mouse skin also protected against inflammation, and equalized cytokine levels to those found in pigmented skin. In summary, pigmentation yields a reduced propensity to develop inflammation, consistent with our hypothesis that dark pigmentation evolved in ancestral humans to provide a suite of barrier-linked benefits that now include resistance to inflammation.
Collapse
Affiliation(s)
- Tzu‐Kai Lin
- Department of DermatologyHualien Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationHualienTaiwan
- School of MedicineTzu Chi UniversityHualienTaiwan
| | - Mao‐Qiang Man
- Department of DermatologyVA Med Ctr/UCSFSan FranciscoCalifornia
| | - Katrina Abuabara
- Program for Clinical ResearchDepartment of DermatologyUC San Francisco School of MedicineSan FranciscoCalifornia
| | | | - Hamm‐ming Sheu
- Department of DermatologyNational Cheng Kung University College of MedicineTainanTaiwan
| | - Jui‐chen Tsai
- Institute of Clinical Pharmacy and Biopharmaceutical SciencesCollege of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Chih‐Hung Lee
- Department of DermatologyKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Peter M. Elias
- Department of DermatologyVA Med Ctr/UCSFSan FranciscoCalifornia
| |
Collapse
|
3
|
Feingold KR, Elias PM. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:280-94. [PMID: 24262790 DOI: 10.1016/j.bbalip.2013.11.007] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/01/2013] [Accepted: 11/10/2013] [Indexed: 12/18/2022]
Abstract
The major function of the skin is to form a barrier between the internal milieu and the hostile external environment. A permeability barrier that prevents the loss of water and electrolytes is essential for life on land. The permeability barrier is mediated primarily by lipid enriched lamellar membranes that are localized to the extracellular spaces of the stratum corneum. These lipid enriched membranes have a unique structure and contain approximately 50% ceramides, 25% cholesterol, and 15% free fatty acids with very little phospholipid. Lamellar bodies, which are formed during the differentiation of keratinocytes, play a key role in delivering the lipids from the stratum granulosum cells into the extracellular spaces of the stratum corneum. Lamellar bodies contain predominantly glucosylceramides, phospholipids, and cholesterol and following the exocytosis of lamellar lipids into the extracellular space of the stratum corneum these precursor lipids are converted by beta glucocerebrosidase and phospholipases into the ceramides and fatty acids, which comprise the lamellar membranes. The lipids required for lamellar body formation are derived from de novo synthesis by keratinocytes and from extra-cutaneous sources. The lipid synthetic pathways and the regulation of these pathways are described in this review. In addition, the pathways for the uptake of extra-cutaneous lipids into keratinocytes are discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Metabolism Section, Medicine Service and Dermatology Service, Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA.
| | - Peter M Elias
- Metabolism Section, Medicine Service and Dermatology Service, Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA
| |
Collapse
|
4
|
Permeability and lipid organization of a novel psoriasis stratum corneum substitute. Int J Pharm 2013; 457:275-82. [DOI: 10.1016/j.ijpharm.2013.08.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 11/15/2022]
|
5
|
Cañueto J, Girós M, González-Sarmiento R. The role of the abnormalities in the distal pathway of cholesterol biosynthesis in the Conradi-Hünermann-Happle syndrome. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:336-44. [PMID: 24036494 DOI: 10.1016/j.bbalip.2013.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 11/28/2022]
Abstract
Conradi-Hünermann-Happle syndrome (CDPX2, OMIM 302960) is an inherited X-linked dominant variant of chondrodysplasia punctata (CP) caused by mutations in one gene of the distal pathway of cholesterol biosynthesis. It exhibits intense phenotypic variation and primarily affects the skin, bones and eyes. The ichthyosis following Blaschko's lines, chondrodysplasia punctata and cataracts are the typical clinical findings. The cardinal biochemical features are an increase in 8(9)-cholestenol and 8-dehydrocholesterol (8DHC), which suggest a deficiency in 3β-hydroxysteroid-Δ8,Δ7-isomerase, also called emopamil binding protein (EBP). The EBP gene is located on the short arm of the X chromosome (Xp11.22-p11.23) and encodes a 230 amino acid protein with dual function. Explaining the clinical phenotype in CDPX2 implies an understanding of both the genetics and biochemical features of this disease. CDPX2 displays an X-linked dominant pattern of inheritance, which is responsible for the distribution of lesions in some tissues. The clinical phenotype in CDPX2 results directly from impairment in cholesterol biosynthesis, and indirectly from abnormalities in the hedgehog signaling protein pathways. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Javier Cañueto
- Department of Dermatology, University Hospital of Salamanca, Paseo San Vicente 58-182, 37007 Salamanca, Spain; IBSAL (Instituto de Investigación Biosanitaria de Salamanca), Spain.
| | - Marisa Girós
- Seccio Errors Congenits del Metabolisme, Servei de Bioquímica Clínica i Genética Molecular, Hospital Clinic Barcelona, Barcelona, Spain
| | - Rogelio González-Sarmiento
- IBSAL (Instituto de Investigación Biosanitaria de Salamanca), Spain; Molecular Medicine Unit, Faculty of Medicine, University of Salamanca, Campus Miguel de Unamuno S/N, Salamanca 37007, Spain; Laboratory 14, IBMCC-CSIC, University of Salamanca, Campus Miguel de Unamuno S/N, Salamanca 37007, Spain
| |
Collapse
|
6
|
Feingold KR. Thematic review series: skin lipids. The role of epidermal lipids in cutaneous permeability barrier homeostasis. J Lipid Res 2007; 48:2531-46. [PMID: 17872588 DOI: 10.1194/jlr.r700013-jlr200] [Citation(s) in RCA: 276] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The permeability barrier is required for terrestrial life and is localized to the stratum corneum, where extracellular lipid membranes inhibit water movement. The lipids that constitute the extracellular matrix have a unique composition and are 50% ceramides, 25% cholesterol, and 15% free fatty acids. Essential fatty acid deficiency results in abnormalities in stratum corneum structure function. The lipids are delivered to the extracellular space by the secretion of lamellar bodies, which contain phospholipids, glucosylceramides, sphingomyelin, cholesterol, and enzymes. In the extracellular space, the lamellar body lipids are metabolized by enzymes to the lipids that form the lamellar membranes. The lipids contained in the lamellar bodies are derived from both epidermal lipid synthesis and extracutaneous sources. Inhibition of cholesterol, fatty acid, ceramide, or glucosylceramide synthesis adversely affects lamellar body formation, thereby impairing barrier homeostasis. Studies have further shown that the elongation and desaturation of fatty acids is also required for barrier homeostasis. The mechanisms that mediate the uptake of extracutaneous lipids by the epidermis are unknown, but keratinocytes express LDL and scavenger receptor class B type 1, fatty acid transport proteins, and CD36. Topical application of physiologic lipids can improve permeability barrier homeostasis and has been useful in the treatment of cutaneous disorders.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Metabolism Section, Medical Service, Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA.
| |
Collapse
|
7
|
Houben E, De Paepe K, Rogiers V. A keratinocyte's course of life. Skin Pharmacol Physiol 2006; 20:122-32. [PMID: 17191035 DOI: 10.1159/000098163] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 10/05/2006] [Indexed: 12/30/2022]
Abstract
An adequate permeability barrier function of the mammalian epidermis is guaranteed by the characteristic architecture of the stratum corneum. This uppermost layer consists of a highly organized extracellular lipid compartment which is tightly joined to the corneocytes. The generation of the extracellular lipid compartment and the transformation of the keratinocytes into corneocytes are the main features of epidermal differentiation. However, equally important is the continuous renewal of the stratum corneum, which is insured by a careful balance between the replenishment of new keratinocytes from the proliferating basal layer, and the well-orchestrated loss of the most superficial cells after the so-called 'epidermal programmed cell death'. In this overview, the complete life of keratinocytes is described, from the proliferative organization to the process of desquamation.
Collapse
Affiliation(s)
- E Houben
- Department of Toxicology, Dermato-cosmetology and Pharmacognosy, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | |
Collapse
|
8
|
Jiang YJ, Lu B, Kim P, Elias PM, Feingold KR. Regulation of ABCA1 expression in human keratinocytes and murine epidermis. J Lipid Res 2006; 47:2248-58. [PMID: 16825673 DOI: 10.1194/jlr.m600163-jlr200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Keratinocytes require abundant cholesterol for cutaneous permeability barrier function; hence, the regulation of cholesterol homeostasis is of great importance. ABCA1 is a membrane transporter responsible for cholesterol efflux and plays a pivotal role in regulating cellular cholesterol levels. We demonstrate that ABCA1 is expressed in cultured human keratinocytes (CHKs) and murine epidermis. Liver X receptor (LXR) activation markedly stimulates ABCA1 mRNA and protein levels in CHKs and mouse epidermis. In addition to LXR, activators of peroxisome proliferator-activated receptor (PPAR)alpha, PPARbeta/delta, and retinoid X receptor (RXR), but neither PPARgamma nor retinoic acid receptor, also increase ABCA1 expression in CHKs. Increases in cholesterol supply induced by LDL or mevalonate stimulate ABCA1 expression, whereas inhibiting cholesterol synthesis with statins or cholesterol sulfate decreases ABCA1 expression in CHKs. After acute permeability barrier disruption by either tape-stripping or acetone treatment, ABCA1 expression declines, and this attenuates cellular cholesterol efflux, making more cholesterol available for regeneration of the barrier. In addition, during fetal epidermal development, ABCA1 expression decreases at days 18-22 of gestation (term = 22 days), leaving more cholesterol available during the critical period of barrier formation. Together, our results show that ABCA1 is expressed in keratinocytes, where it is negatively regulated by a decrease in cellular cholesterol levels or altered permeability barrier requirements and positively regulated by activators of LXR, PPARs, and RXR or increases in cellular cholesterol levels.
Collapse
Affiliation(s)
- Yan J Jiang
- Metabolism Section, Veterans Affairs Medical Center, Northern California Institute for Research and Education, University of California at San Francisco, San Francisco, CA 94121, USA
| | | | | | | | | |
Collapse
|
9
|
Lu B, Jiang YJ, Man MQ, Brown B, Elias PM, Feingold KR. Expression and regulation of 1-acyl-sn-glycerol- 3-phosphate acyltransferases in the epidermis. J Lipid Res 2005; 46:2448-57. [PMID: 16150824 DOI: 10.1194/jlr.m500258-jlr200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipids are a major class of lipids in epidermis, where they serve as a source of free fatty acids that are important for the maintenance of epidermal permeability barrier function. The phospholipid biosynthetic enzyme, 1-acyl-sn-glycerol-3-phosphate acyltransferase (AGPAT), catalyzes the acylation of lysophosphatidic acid to form phosphatidic acid, the major precursor of all glycerolipids. We identified an expression pattern of AGPAT isoforms that is unique to epidermis, with relatively high constitutive expression of mouse AGPAT (mAGPAT) 3, 4, and 5 but low constitutive expression of mAGPAT 1 and 2. Localization studies indicate that all five isoforms of AGPAT were expressed in all nucleated layers of epidermis. Furthermore, rat AGPAT 2 and 5 mRNAs increased in parallel with both an increase in enzyme activity and permeability barrier formation late in rat epidermal development. Moreover, after two methods of acute permeability barrier disruption, mAGPAT 1, 2, and 3 mRNA levels increased rapidly and were sustained for at least 24 h. In parallel with the increase in mRNA levels, an increase in AGPAT activity also occurred. Because upregulation of mAGPAT mRNAs after tape-stripping could be partially reversed by artificial barrier restoration by occlusion, these studies suggest that an increase in the expression of AGPATs is linked to barrier requirements.
Collapse
Affiliation(s)
- Biao Lu
- Dermatology and Medicine Services, Veterans Administration Medical Center and University of California School of Medicine, San Francisco, CA 94121, USA
| | | | | | | | | | | |
Collapse
|
10
|
Jensen JM, Förl M, Winoto-Morbach S, Seite S, Schunck M, Proksch E, Schütze S. Acid and neutral sphingomyelinase, ceramide synthase, and acid ceramidase activities in cutaneous aging. Exp Dermatol 2005; 14:609-18. [PMID: 16026583 DOI: 10.1111/j.0906-6705.2005.00342.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In aged skin, decreased levels of stratum corneum ceramides have been described. Epidermal ceramides are generated by sphingomyelin hydrolysis or synthesis from sphingosin and fatty acids and are degraded by ceramidase. We recently showed that epidermal acid sphingomyelinase (A-SMase) generates ceramides with structural function in the stratum corneum lipid bilayers, which provide for the permeability barrier function of the skin. Here, we examined the activities of epidermal A-SMase, ceramide synthase, and ceramidase in chronologically aged versus young hairless mouse skin. We found reduced A-SMase and ceramide synthase activities in the epidermis of aged mice. However, studies on enzyme localization revealed unchanged, ongoing high A-SMase activity in the outer epidermis, which correlated with reported normal barrier function found in aged skin under basal conditions. Reduced A-SMase and ceramide synthase activity was noted in the inner epidermis, correlating with reduced capacity for permeability barrier repair in aging. Ceramidase activity was not age dependent. In summary, we found reduced activities of ceramide-generating SMase and ceramide synthase in the inner epidermis of aged skin, explaining its reduced capacity in barrier repair. In contrast, A-SMase activity in the outer epidermis was unchanged, indicating that this enzyme is crucially involved in basal permeability barrier homeostasis.
Collapse
|
11
|
Harris IR, Höppner H, Siefken W, Farrell AM, Wittern KP. Regulation of HMG-CoA synthase and HMG-CoA reductase by insulin and epidermal growth factor in HaCaT keratinocytes. J Invest Dermatol 2000; 114:83-7. [PMID: 10620120 DOI: 10.1046/j.1523-1747.2000.00822.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Synthesis of cholesterol, via the isoprenoid/mevalonate pathway, is required for keratinocyte growth and differentiation, and maintenance of the stratum corneum lipid lamellae. 3-hydroxy-3-methylglutaryl coenzyme A synthase catalyzes the first step in isoprenoid/mevalonate synthesis and under some conditions controls the flux into the pathway. We have investigated whether selected growth factors and hormones could increase 3-hydroxy-3-methylglutaryl coenzyme A synthase mRNA in keratinocytes. Northern blotting was used to demonstrate that 10 microg per ml insulin and 0.1 microg per ml epidermal growth factor both increased steady-state levels of 3-hydroxy-3-methylglutaryl coenzyme A synthase mRNA by 2.5 and 6-fold, respectively. Epidermal growth factor and insulin also increased 3-hydroxy-3-methylglutaryl coenzyme A reductase enzyme activity. 3-hydroxy-3-methylglutaryl coenzyme A synthase promoter activity in a luciferase reporter construct was increased 2-fold by insulin and 2.9-fold by epidermal growth factor. When a mutation in the sterol regulatory element was introduced into the 3-hydroxy-3-methylglutaryl coenzyme A synthase promoter, activity was not increased by insulin, but was increased by epidermal growth factor. Mutation of an AP-1 site in the 3-hydroxy-3-methylglutaryl coenzyme A synthase promoter did not affect the increase in activity following treatment with insulin or epidermal growth factor. Therefore, 3-hydroxy-3-methylglutaryl coenzyme A synthase expression in keratinocytes is regulated by insulin and epidermal growth factor by different mechanisms. These results suggest a role for hormones and growth factors in the control of epidermal cholesterol synthesis.
Collapse
Affiliation(s)
- I R Harris
- Research Department, Paul Gerson Unna Skin Research Center, Beiersdorf AG, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
12
|
Jensen JM, Schütze S, Förl M, Krönke M, Proksch E. Roles for tumor necrosis factor receptor p55 and sphingomyelinase in repairing the cutaneous permeability barrier. J Clin Invest 1999; 104:1761-70. [PMID: 10606630 PMCID: PMC409877 DOI: 10.1172/jci5307] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Epidermal TNF expression increases in response to cutaneous permeability barrier disruption and wound healing. TNF signaling is mediated by acid and neutral sphingomyelinases (A- and N-SMase), which generate ceramide, an important regulator of proliferation, differentiation, and apoptosis. In the epidermis, ceramide is known to be an integral part of the extracellular stratum corneum (SC) lipid bilayers that constitute the permeability barrier of the skin. We show here that topical application of TNF after experimental injury to the SC of hairless mice (hr(-/-)) enhances barrier repair. In TNF receptor p55-deficient (TNF-R55-deficient) mice (hr(+/+)), cutaneous barrier repair was delayed compared with wild-type (hr(+/+)) or TNF-R75-deficient (hr(+/+)) animals. After barrier disruption in hairless (hr(-/-)) and wild-type (hr(+/+)), but not in TNF-R55-deficient (hr(+/+)) mice, the enzymatic activities of both A-SMase and N-SMase were significantly enhanced. Stimulation of SMase activities was accompanied by an increase in C(24)-ceramide levels. Most A-SMase activity in hairless mice (hr(-/-)) was found in the outer epidermal cell layers and colocalized in the lamellar bodies with A-SMase and sphingomyelin. Reduction of epidermal A-SMase activity by the inhibitor imipramine resulted in delayed permeability barrier repair after SC injury. Together, these results suggest that TNF-R55 signaling pathways contribute to cutaneous permeability barrier repair through SMase-mediated generation of ceramide.
Collapse
Affiliation(s)
- J M Jensen
- Department of Dermatology, and. Institute of Immunology, University of Kiel, 24105 Kiel, Germany
| | | | | | | | | |
Collapse
|
13
|
Lechowski R, Sawosz E, Kluciński W. The effect of the addition of oil preparation with increased content of n-3 fatty acids on serum lipid profile and clinical condition of cats with miliary dermatitis. ZENTRALBLATT FUR VETERINARMEDIZIN. REIHE A 1998; 45:417-24. [PMID: 9793472 DOI: 10.1111/j.1439-0442.1998.tb00844.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to determine the influence of an oil preparation with increased n-3 fatty acids content on the serum lipid profile and clinical condition of cats with miliary dermatitis. The studies were performed on 22 cats of various breeds and both sexes, aged between 3 and 7 years, that had been fed a balanced diet, based on beef meat for the previous 6 months. The animals were divided into four groups: I, five clinically healthy cats; II, five clinically healthy cats, receiving 1 ml of oil preparation with food for 6 weeks; III, seven nonpruritic cats with miliary dermatitis, without treatment; and group IV, five nonpruritic cats with miliary dermatitis, receiving 1 ml of oil preparation per day with food for 6 weeks. Every 2 weeks all cats were clinically examined. Determination of the serum lipid profile and composition of the oil preparation was performed using gas chromatography. The concentration of total cholesterol (CHL), high-density lipoprotein (HDL) fraction and triacylglycerols (TG) were determined spectrophotometrically. In three sick animals, the dermatological signs disappeared completely. In cats with miliary dermatitis, who did not receive the oil preparation, the ratio of cholesterol and HDL to triacylglycerols was reversed compared with healthy cats and sick animals which had received the oil preparation. The addition of the oil preparation lowered the content of saturated fatty acids in serum, in particular palmitic acid, and increased the content of unsaturated acids, linolenic, eicosapentaenoic (EPA, n-3) and docosahexaenoic acid (DHA, n-3). Simultaneously, a nonsignificant rise in arachidonic acid (AA, n-6) and a decrease in dihomo-gamma-linolenic acid (DGLA, n-6) were found. These observations indicate that cats with miliary dermatitis require an increased amount of n-3 fatty acids in the diet. This was proved not only by the observed changes in the serum lipid profile but also by the clinical improvement.
Collapse
|
14
|
Glucosylceramide synthase activity in murine epidermis: quantitation, localization, regulation, and requirement for barrier homeostasis. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)33889-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Haratake A, Uchida Y, Schmuth M, Tanno O, Yasuda R, Epstein JH, Elias PM, Holleran WM. UVB-induced alterations in permeability barrier function: roles for epidermal hyperproliferation and thymocyte-mediated response. J Invest Dermatol 1997; 108:769-75. [PMID: 9129231 DOI: 10.1111/1523-1747.ep12292163] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
UV irradiation induces a variety of cutaneous responses, including disruption of epidermal permeability barrier function, the basis for which is not known. Herein, we investigated the separate roles of hyperproliferation and inflammation in the pathogenesis of UVB-induced barrier disruption. Adult hairless mice were exposed to increasing doses of UVB (1.5-7.5 MED), and transepidermal water loss (TEWL) was monitored daily for up to 7 d. The extent of TEWL increase was dependent on the UVB dose, but with all doses, the increase began after > or =48 h and peaked at 96 h, decreasing by 120 h. Epidermal [(3)H]thymidine incorporation increased at 24 h and peaked at 48 h (570%), preceding the maximal increase in TEWL. Cyclosporin A, methotrexate, 5-fluorouracil, or arabinosylcytosine significantly diminished the UVB-induced TEWL increase. Athymic nude mice also displayed a markedly diminished response to UVB, and DNA synthesis did not increased at 48 h. Transplantation of athymic mice with T-cell-enriched mixed immune cells significantly restored sensitivity to both the UVB-induced hyperproliferation and the barrier defect. Finally, although UVB exposure increased PGE2 levels in whole skin samples (2- to 3-fold within 1-3 h; p < 0.005), this increase was completely blocked by topical indomethacin, and neither topical indomethacin nor topical glucocorticoids blocked development of the barrier abnormality. These results show that (i) UVB produces delayed alteration in barrier function and (ii) both an epidermal proliferative response and thymocyte-mediated events (but not PGE2 production and nonspecific inflammation) appear to contribute to UVB-induced abrogation of the permeability barrier.
Collapse
Affiliation(s)
- A Haratake
- Cosmetics Laboratory, Kanebo Limited, Odawara-shi, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The stratum corneum (SC) controls the diffusion and penetration of chemical substances and drugs into and through the skin. Surprisingly, knowledge of the SC structure and reaction to the various irritants is still poorly understood. Routine transmission electron microscopy has not been effective in demonstrating the epidermal lipids (EL) of SC which are believed to morphologically represent the water permeability barrier. To gain a better understanding of the interaction of chemically different irritants with the SC, we investigated the ultrastructural changes of epidermal lipids resulting from the topical application of sodium dodecyl sulfate (SDS 0.5% and 1% w/v) and absolute acetone. The disturbance of barrier function by these irritants was determined by the increase of transepidermal water loss (TEWL). Punch biopsies from the treated sites showed a maximum increase of TEWL. To visualize the EL which derive from lamellar body (LB) lipids (sheets), we used a special fixation method utilizing 0.5% ruthenium tetroxide/0.25% KFe(CN)6 as the postfixative. The 0.5% SDS caused cell damage to the nucleated cells of the epidermis with disturbance of LB lipid extrusion and the transformation into the lipid bilayers. However, the upper portions of SC displayed intact intercellular lipid layers. With the acetone treatment, the EL lamellae showed disruption and loss of cohesion between the lamellae at all levels of the SC. The more polar LB lipids appeared more resistant to acetone. The results of this study suggest that different irritants induce distinct and characteristic alterations to reflect the specific interaction with the epidermal permeability barrier.
Collapse
Affiliation(s)
- M Fartasch
- Department of Dermatology, University of Erlangen, Germany.
| |
Collapse
|
17
|
Affiliation(s)
- P M Elias
- Dermatology Service, Department of Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| |
Collapse
|
18
|
Affiliation(s)
- P M Elias
- Department of Dermatology, University of California, San Francisco, USA
| |
Collapse
|
19
|
|
20
|
Motta S, Sesana S, Ghidoni R, Monti M. Content of the different lipid classes in psoriatic scale. Arch Dermatol Res 1995; 287:691-4. [PMID: 8534136 DOI: 10.1007/bf00371745] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- S Motta
- Institute of Dermatological Science, IRCCS, Ospedale Maggiore, Milan, Italy
| | | | | | | |
Collapse
|
21
|
Mao-Qiang M, Feingold KR, Jain M, Elias PM. Extracellular processing of phospholipids is required for permeability barrier homeostasis. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)41111-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
22
|
Holleran WM, Gao WN, Feingold KR, Elias PM. Localization of epidermal sphingolipid synthesis and serine palmitoyl transferase activity: alterations imposed by permeability barrier requirements. Arch Dermatol Res 1995; 287:254-8. [PMID: 7598529 DOI: 10.1007/bf01105075] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sphingolipids, the predominant lipid species in mammalian stratum corneum play, a central role in permeability barrier homeostatis. Prior studies have shown that the epidermis synthesizes abundant sphingolipids, a process regulated by barrier requirements, and that inhibition of sphingolipid synthesis interferes with barrier homeostasis. To investigate further the relationship between epidermal sphingolipid metabolism and barrier function, we localized sphingolipid synthetic activity in murine epidermis under basal conditions, and following acute (acetone treatment) or chronic (essential fatty acid deficiency, EFAD) barrier perturbation, using dithiothreitol and/or the staphylococcal epidermolytic toxin to isolate the lower from the outer epidermis. Under basal conditions, both the activity of serine palmitoyl transferase (SPT), the rate-limiting enzyme of sphingolipid synthesis, and the rates of 3H-H2O incorporation into sphingolipids were nearly equivalent in the lower and the outer epidermis. Following acute barrier perturbation, SPT activity increased significantly in both the lower (35%; P < 0.05) and the outer epidermal layers (60%; P < 0.01). The rates of 3H-H2O incorporation into each major sphingolipid family, including ceramides, glucosylceramides and sphingomyelin, increased significantly in both the lower and the outer epidermis of treated flanks after acute barrier disruption. Finally, SPT activity was modestly elevated (20%; P < 0.01) in the lower but not in the outer epidermis of EFAD animals. These studies demonstrate the ability of both lower and outer epidermal cells to generate sphingolipids, and that permeability barrier homeostatic mechanisms appear to differentially regulate SPT activity and sphingolipid synthesis in the lower and the outer epidermis in response to acute and chronic barrier perturbation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W M Holleran
- Dermatology Service, Veterans Administration Medical Center, San Francisco, CA 94121, USA
| | | | | | | |
Collapse
|
23
|
Proksch E, Holleran WM, Menon GK, Elias PM, Feingold KR. Barrier function regulates epidermal lipid and DNA synthesis. Br J Dermatol 1993; 128:473-82. [PMID: 8504036 DOI: 10.1111/j.1365-2133.1993.tb00222.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The stratum corneum, the permeability barrier between the internal milieu and the environment, is composed of fibrous protein-enriched corneocytes and a lipid-enriched intercellular matrix. The lipids are a mixture of sphingolipids, cholesterol and free fatty acids, which form intercellular membrane bilayers. Lipid synthesis occurs in the keratinocytes in all nucleated layers of the epidermis, and the newly synthesized lipids are delivered by lamellar bodies to the interstices of the stratum corneum during epidermal differentiation. Disruption of barrier function by topical acetone treatment results in an increase in the synthesis of free fatty acids, sphingolipids and cholesterol in the living layers of the epidermis, leading to barrier repair. Cholesterol and sphingolipid synthesis are regulated by the rate-limiting enzymes HMG CoA reductase and serine palmitoyl transferase (SPT), respectively. Acute barrier disruption leads to an increase in both enzymes, but with a different time curve: increase in HMG CoA reductase activity begins at 1.5 h, whereas the increase in SPT activity occurs 6 h after barrier impairment. Topical application of HMG CoA reductase or SPT inhibitors after acetone treatment delays barrier repair, providing further evidence for a role of cholesterol and sphingolipids in epidermal barrier function. Repeated application of lovastatin to untreated skin results in disturbed barrier function accompanied by increased DNA synthesis and epidermal hyperplasia. Therefore, we have examined the specific relationship between barrier function and epidermal DNA synthesis. After acute and chronic disturbances not only lipid, but also DNA synthesis, is stimulated. Thus, stimulation of DNA synthesis leading to epidermal hyperplasia may be a second mechanism by which the epidermis repairs defects in barrier function. The link between barrier function and both lipid and DNA synthesis is supported further by occlusion studies. Artificial barrier repair by latex occlusion prevents an increase in both lipid and DNA synthesis. In addition, increased epidermal lipid and DNA synthesis in essential fatty-acid deficiency can be reversed by topical applications of the n-6 unsaturated fatty acids, linoleic or columbinic acid. These studies may be of relevance in understanding the pathogenesis of hyperproliferative skin diseases, such as ichthyosis, psoriasis, atopic dermatitis, and irritant contact dermatitis.
Collapse
Affiliation(s)
- E Proksch
- Dermatology Service, Veterans Administration Medical Center, San Francisco, CA
| | | | | | | | | |
Collapse
|
24
|
Holleran WM, Takagi Y, Menon GK, Legler G, Feingold KR, Elias PM. Processing of epidermal glucosylceramides is required for optimal mammalian cutaneous permeability barrier function. J Clin Invest 1993; 91:1656-64. [PMID: 8473508 PMCID: PMC288144 DOI: 10.1172/jci116374] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The interstices of the mammalian stratum corneum contain lipids in a system of continuous membrane bilayers critical for the epidermal permeability barrier. During the transition from inner to outer stratum corneum, the content of polar lipids including glucosylceramides, decreases while ceramide content increases. We investigated whether inhibition of glucosylceramide hydrolysis would alter epidermal permeability barrier function. Daily topical applications of bromoconduritol B epoxide (BrCBE) to intact murine skin selectively inhibited beta-glucocerebrosidase, increased glucosylceramide content of stratum corneum with ceramide content remaining largely unchanged, and caused a progressive, reversible decrease in barrier function. Histochemistry of inhibitor-treated epidermis revealed persistence of periodic acid-Schiff-positive staining in stratum corneum cell membranes, consistent with retention of hexose moieties. Electron microscopy of inhibitor-treated samples revealed no evidence of toxicity or changes in the epidermal lipid delivery system. However, immature membrane structures persisted in the intercellular spaces throughout the stratum corneum, with reappearance of mature membrane structures progressing outward from the lower stratum corneum upon termination of BrCBE. Finally, the induced barrier abnormality was not reversed by coapplications of ceramide. These data demonstrate that glucosylceramide hydrolysis is important in the formation of the epidermal permeability barrier, and suggest that accumulation of glucosylceramides in stratum corneum intercellular membrane domains leads to abnormal barrier function.
Collapse
Affiliation(s)
- W M Holleran
- Department of Dermatology, University of California School of Medicine, San Francisco 94143
| | | | | | | | | | | |
Collapse
|
25
|
Wood LC, Jackson SM, Elias PM, Grunfeld C, Feingold KR. Cutaneous barrier perturbation stimulates cytokine production in the epidermis of mice. J Clin Invest 1992; 90:482-7. [PMID: 1644919 PMCID: PMC443124 DOI: 10.1172/jci115884] [Citation(s) in RCA: 329] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The disruption of the cutaneous permeability barrier results in metabolic events that ultimately restore barrier function. These include increased epidermal sterol, fatty acid, and sphingolipid synthesis, as well as increased epidermal DNA synthesis. Because tumor necrosis factor (TNF) and other cytokines are known products of keratinocytes and have been shown to modulate lipid and DNA synthesis in other systems, their levels were examined in two acute models and one chronic model of barrier perturbation in hairless mice. Acute barrier disruption with acetone results in a 72% increase in epidermal TNF 2.5 h after treatment, as determined by Western blotting. Furthermore, epidermal TNF mRNA was elevated ninefold over controls 2.5 h after acetone treatment. This elevation in TNF mRNA was maximal at 1 h after acetone, and decreased to control levels by 8 h. After tape stripping, a second acute model of barrier disruption that avoids application of potentially toxic chemicals, TNF mRNA was elevated fivefold over controls at 2.5 h. Moreover, the mRNA levels for epidermal IL-1 alpha, IL-1 beta, and granulocyte macrophage-colony-stimulating factor (GM-CSF) also were elevated several-fold over controls, after either acetone treatment or tape stripping, but their kinetics differed. GM-CSF mRNA reached a maximal level at 1 h after acetone, while IL-1 alpha and IL-1 beta were maximal at 4 h after treatment. In contrast, mRNAs encoding IL-6 and IFN gamma were not detected either in control murine epidermis or in samples obtained at various times after tape stripping or acetone treatment. The relationship of the cytokine response to barrier function is further strengthened by results obtained in essential fatty acid deficient mice. In this chronic model of barrier perturbation mRNA levels for epidermal TNF, IL-1 alpha, IL-1 beta, and GM-CSF were each elevated several-fold over controls. These results suggest that epidermal cytokine production is increased after barrier disruption and may play a role in restoring the cutaneous permeability barrier.
Collapse
Affiliation(s)
- L C Wood
- Dermatology Service, Department of Veterans Affairs Medical Center, San Francisco, CA 94121
| | | | | | | | | |
Collapse
|
26
|
Proksch E, Feingold KR, Elias PM. Epidermal HMG CoA reductase activity in essential fatty acid deficiency: barrier requirements rather than eicosanoid generation regulate cholesterol synthesis. J Invest Dermatol 1992; 99:216-20. [PMID: 1629633 DOI: 10.1111/1523-1747.ep12650440] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We showed previously that the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting enzyme of cholesterol biosynthesis, increases after both barrier disruption with organic solvents and in essential fatty acid deficiency (EFAD). Here, we treated EFAD hairless mice with linoleic acid, columbinic acid (C18: 3, n-6, trans; not metabolizable to known regulatory eicosanoids), prostaglandin E2 (PGE2), or latex occlusion, and determined transepidermal water loss (TEWL), epidermal protein content, and epidermal HMG CoA reductase activity. Increased TEWL rates in EFAD were accompanied by increased HMG CoA reductase activity (+130%, n = 6, p less than 0.01) and protein content (+69%; n = 6, p less than 0.025). Artificial restoration of the barrier by occlusion reduced the increase in enzyme activity and protein content toward normal, but barrier function, measured immediately after removal of the latex wrap, deteriorated further (TEWL: two-fold greater than EFAD unoccluded; p less than 0.01). Topical applications of either linoleate or columbinate (but not PGE2), normalized barrier function, HMG CoA reductase activity, and protein content. These results show that a) barrier function modulates HMG CoA reductase activity; b) reduction of cholesterol synthesis with occlusion results in a further deterioration in barrier function, suggesting that increased synthesis is a protective homeostatic response; and c) the barrier abnormality reflects a requirement for specific fatty acids for the barrier rather than resulting from epidermal hyperplasia or decreased prostaglandin generation.
Collapse
Affiliation(s)
- E Proksch
- Department of Dermatology, University of Kiel, Germany
| | | | | |
Collapse
|
27
|
HMG-CoA reductase inhibitors perturb fatty acid metabolism and induce peroxisomes in keratinocytes. J Lipid Res 1992. [DOI: 10.1016/s0022-2275(20)41539-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Schurer NY, Elias PM. The biochemistry and function of stratum corneum lipids. ADVANCES IN LIPID RESEARCH 1991; 24:27-56. [PMID: 1763715 DOI: 10.1016/b978-0-12-024924-4.50006-7] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- N Y Schurer
- Department of Dermatology, Heinrich-Heine Universitat Dusseldorf, Germany
| | | |
Collapse
|
29
|
Affiliation(s)
- M L Williams
- Department of Dermatology, University of California, San Francisco 94143
| |
Collapse
|