1
|
Ranea-Robles P, Pavlova NN, Bender A, Pereyra AS, Ellis JM, Stauffer B, Yu C, Thompson CB, Argmann C, Puchowicz M, Houten SM. A mitochondrial long-chain fatty acid oxidation defect leads to transfer RNA uncharging and activation of the integrated stress response in the mouse heart. Cardiovasc Res 2022; 118:3198-3210. [PMID: 35388887 PMCID: PMC9799058 DOI: 10.1093/cvr/cvac050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS Cardiomyopathy and arrhythmias can be severe presentations in patients with inherited defects of mitochondrial long-chain fatty acid β-oxidation (FAO). The pathophysiological mechanisms that underlie these cardiac abnormalities remain largely unknown. We investigated the molecular adaptations to a FAO deficiency in the heart using the long-chain acyl-CoA dehydrogenase (LCAD) knockout (KO) mouse model. METHODS AND RESULTS We observed enrichment of amino acid metabolic pathways and of ATF4 target genes among the upregulated genes in the LCAD KO heart transcriptome. We also found a prominent activation of the eIF2α/ATF4 axis at the protein level that was independent of the feeding status, in addition to a reduction of cardiac protein synthesis during a short period of food withdrawal. These findings are consistent with an activation of the integrated stress response (ISR) in the LCAD KO mouse heart. Notably, charging of several transfer RNAs (tRNAs), such as tRNAGln was decreased in LCAD KO hearts, reflecting a reduced availability of cardiac amino acids, in particular, glutamine. We replicated the activation of the ISR in the hearts of mice with muscle-specific deletion of carnitine palmitoyltransferase 2. CONCLUSIONS Our results show that perturbations in amino acid metabolism caused by long-chain FAO deficiency impact cardiac metabolic signalling, in particular the ISR. These results may serve as a foundation for investigating the role of the ISR in the cardiac pathology associated with long-chain FAO defects.Translational Perspective: The heart relies mainly on mitochondrial fatty acid β-oxidation (FAO) for its high energy requirements. The heart disease observed in patients with a genetic defect in this pathway highlights the importance of FAO for cardiac health. We show that the consequences of a FAO defect extend beyond cardiac energy homeostasis and include amino acid metabolism and associated signalling pathways such as the integrated stress response.
Collapse
Affiliation(s)
- Pablo Ranea-Robles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| | - Natalya N Pavlova
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aaron Bender
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| | - Andrea S Pereyra
- Brody School of Medicine at East Carolina University, Department of Physiology, and East Carolina Diabetes and Obesity Institute, Greenville, NC 27858, USA
| | - Jessica M Ellis
- Brody School of Medicine at East Carolina University, Department of Physiology, and East Carolina Diabetes and Obesity Institute, Greenville, NC 27858, USA
| | - Brandon Stauffer
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
- Mount Sinai Genomics, Inc, Stamford, CT 06902, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
- Mount Sinai Genomics, Inc, Stamford, CT 06902, USA
| | - Craig B Thompson
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| | - Michelle Puchowicz
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| |
Collapse
|
2
|
Abstract
In this chapter we consider the catalytic approaches used by aminoacyl-tRNA synthetase (AARS) enzymes to synthesize aminoacyl-tRNA from cognate amino acid and tRNA. This ligase reaction proceeds through an activated aminoacyl-adenylate (aa-AMP). Common themes among AARSs include use of induced fit to drive catalysis and transition state stabilization by class-conserved sequence and structure motifs. Active site metal ions contribute to the amino acid activation step, while amino acid transfer to tRNA is generally a substrate-assisted concerted mechanism. A distinction between classes is the rate-limiting step for aminoacylation. We present some examples for each aspect of aminoacylation catalysis, including the experimental approaches developed to address questions of AARS chemistry.
Collapse
|
3
|
Scott M, Klumpp S, Mateescu EM, Hwa T. Emergence of robust growth laws from optimal regulation of ribosome synthesis. Mol Syst Biol 2014; 10:747. [PMID: 25149558 PMCID: PMC4299513 DOI: 10.15252/msb.20145379] [Citation(s) in RCA: 270] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Bacteria must constantly adapt their growth to changes in nutrient availability; yet despite
large-scale changes in protein expression associated with sensing, adaptation, and processing
different environmental nutrients, simple growth laws connect the ribosome abundance and the growth
rate. Here, we investigate the origin of these growth laws by analyzing the features of ribosomal
regulation that coordinate proteome-wide expression changes with cell growth in a variety of
nutrient conditions in the model organism Escherichia coli. We identify
supply-driven feedforward activation of ribosomal protein synthesis as the key regulatory motif
maximizing amino acid flux, and autonomously guiding a cell to achieve optimal growth in different
environments. The growth laws emerge naturally from the robust regulatory strategy underlying growth
rate control, irrespective of the details of the molecular implementation. The study highlights the
interplay between phenomenological modeling and molecular mechanisms in uncovering fundamental
operating constraints, with implications for endogenous and synthetic design of microorganisms.
Collapse
Affiliation(s)
- Matthew Scott
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Stefan Klumpp
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Eduard M Mateescu
- Department of Physics and Center for Theoretical Biological Physics, University of California, San Diego La Jolla, CA, USA
| | - Terence Hwa
- Department of Physics and Center for Theoretical Biological Physics, University of California, San Diego La Jolla, CA, USA Institute for Theoretical Studies, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Heat maps for intramolecular communication in an RNP enzyme encoding glutamine. Structure 2011; 19:386-96. [PMID: 21397189 DOI: 10.1016/j.str.2010.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 12/06/2010] [Accepted: 12/22/2010] [Indexed: 01/16/2023]
Abstract
Allosteric signaling within large ribonucleoproteins modulates both catalytic function and biological specificity, but the spatial extent and quantitative magnitudes of long-distance free-energy couplings have yet to be well characterized. Here, we employ pre-steady-state kinetics to generate a comprehensive mapping of intramolecular communication in the glutaminyl-tRNA synthetase:tRNA(Gln) complex. Alanine substitution at 29 positions across the protein-RNA interface reveals distinct coupling amplitudes for glutamine binding and aminoacyl-tRNA formation on the enzyme, respectively, implying the existence of multiple signaling pathways. Structural models suggest that long-range signal propagation from the tRNA anticodon is dynamically driven, whereas shorter pathways are mediated by induced-fit rearrangements. Seven protein contacts with the distal tRNA vertical arm each weaken glutamine binding affinity across distances up to 40 Å, demonstrating that negative allosteric coupling plays a key role in enforcing the selective RNA-amino acid pairing at the heart of the genetic code.
Collapse
|
5
|
Rodríguez-Hernández A, Bhaskaran H, Hadd A, Perona JJ. Synthesis of Glu-tRNA(Gln) by engineered and natural aminoacyl-tRNA synthetases. Biochemistry 2010; 49:6727-36. [PMID: 20617848 DOI: 10.1021/bi100886z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A protein engineering approach to delineating which distinct elements of homologous tRNA synthetase architectures are responsible for divergent RNA-amino acid pairing specificities is described. Previously, we constructed a hybrid enzyme in which 23 amino acids from the catalytic domain of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) were replaced with the corresponding residues of human glutamyl-tRNA synthetase (GluRS). The engineered hybrid (GlnRS S1/L1/L2) synthesizes Glu-tRNA(Gln) more than 10(4)-fold more efficiently than GlnRS. Detailed comparison of kinetic parameters between GlnRS S1/L1/L2 and the naturally occurring Methanothermobacter thermautotrophicus GluRS(ND), which is also capable of Glu-tRNA(Gln) synthesis, now shows that both k(cat) and K(m) for glutamate are recapitulated in the engineered enzyme, but that K(m) for tRNA is 200-fold higher. Thus, the simultaneous optimization of paired amino acid and tRNA binding sites found in a naturally occurring enzyme is not recapitulated in a hybrid that is successfully engineered for amino acid complementarity. We infer that the GlnRS architecture has differentiated to match only cognate amino acid-RNA pairs, and that the substrate selection functions do not operate independently of each other. Design and characterization of four additional hybrids identify further residues involved in improving complementarity for glutamate and in communicating between amino acid and tRNA binding sites. The robust catalytic function demonstrated in this engineered system offers a novel platform for exploring the stereochemical origins of coding as a property of the ancient Rossmann fold.
Collapse
Affiliation(s)
- Annia Rodríguez-Hernández
- Department of Chemistry and Biochemistry and Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106-9510, USA
| | | | | | | |
Collapse
|
6
|
Sherman JM, Rogers MJ, Söll D. Competition of aminoacyl-tRNA synthetases for tRNA ensures the accuracy of aminoacylation. Nucleic Acids Res 2010; 20:1547-52. [PMID: 16617497 PMCID: PMC312236 DOI: 10.1093/nar/20.7.1547] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The accuracy of protein biosynthesis rests on the high fidelity with which aminoacyl-tRNA synthetases discriminate between tRNAs. Correct aminoacylation depends not only on identity elements (nucleotides in certain positions) in tRNA (1), but also on competition between different synthetases for a given tRNA (2). Here we describe in vivo and in vitro experiments which demonstrate how variations in the levels of synthetases and tRNA affect the accuracy of aminoacylation. We show in vivo that concurrent overexpression of Escherichia coli tyrosyl-tRNA synthetase abolishes misacylation of supF tRNA(Tyr) with glutamine in vivo by overproduced glutaminyl-tRNA synthetase. In an in vitro competition assay, we have confirmed that the overproduction mischarging phenomenon observed in vivo is due to competition between the synthetases at the level of aminoacylation. Likewise, we have been able to examine the role competition plays in the identity of a non-suppressor tRNA of ambiguous identity, tRNA(Glu). Finally, with this assay, we show that the identity of a tRNA and the accuracy with which it is recognized depend on the relative affinities of the synthetases for the tRNA. The in vitro competition assay represents a general method of obtaining qualitative information on tRNA identity in a competitive environment (usually only found in vivo) during a defined step in protein biosynthesis, aminoacylation. In addition, we show that the discriminator base (position 73) and the first base of the anticodon are important for recognition by E. coli tyrosyl-tRNA synthetase.
Collapse
Affiliation(s)
- J M Sherman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | | | | |
Collapse
|
7
|
Akochy PM, Bernard D, Roy PH, Lapointe J. Direct glutaminyl-tRNA biosynthesis and indirect asparaginyl-tRNA biosynthesis in Pseudomonas aeruginosa PAO1. J Bacteriol 2004; 186:767-76. [PMID: 14729703 PMCID: PMC321480 DOI: 10.1128/jb.186.3.767-776.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genomic sequence of Pseudomonas aeruginosa PAO1 was searched for the presence of open reading frames (ORFs) encoding enzymes potentially involved in the formation of Gln-tRNA and of Asn-tRNA. We found ORFs similar to known glutamyl-tRNA synthetases (GluRS), glutaminyl-tRNA synthetases (GlnRS), aspartyl-tRNA synthetases (AspRS), and trimeric tRNA-dependent amidotransferases (AdT) but none similar to known asparaginyl-tRNA synthetases (AsnRS). The absence of AsnRS was confirmed by biochemical tests with crude and fractionated extracts of P. aeruginosa PAO1, with the homologous tRNA as the substrate. The characterization of GluRS, AspRS, and AdT overproduced from their cloned genes in P. aeruginosa and purified to homogeneity revealed that GluRS is discriminating in the sense that it does not glutamylate tRNA(Gln), that AspRS is nondiscriminating, and that its Asp-tRNA(Asn) product is transamidated by AdT. On the other hand, tRNA(Gln) is directly glutaminylated by GlnRS. These results show that P. aeruginosa PAO1 is the first organism known to synthesize Asn-tRNA via the indirect pathway and to synthesize Gln-tRNA via the direct pathway. The essential role of AdT in the formation of Asn-tRNA in P. aeruginosa and the absence of a similar activity in the cytoplasm of eukaryotic cells identifies AdT as a potential target for antibiotics to be designed against this human pathogen. Such novel antibiotics could be active against other multidrug-resistant gram-negative pathogens such as Burkholderia and Neisseria as well as all pathogenic gram-positive bacteria.
Collapse
Affiliation(s)
- Pierre-Marie Akochy
- Département de Biochimie et de Microbiologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada G1K 7P4
| | | | | | | |
Collapse
|
8
|
Abstract
The crystal structure of ligand-free E. coli glutaminyl-tRNA synthetase (GlnRS) at 2.4 A resolution shows that substrate binding is essential to construction of a catalytically proficient active site. tRNA binding generates structural changes throughout the enzyme, repositioning key active site peptides that bind glutamine and ATP. The structure gives insight into longstanding questions regarding the tRNA dependence of glutaminyl adenylate formation, the coupling of amino acid and tRNA selectivities, and the roles of specific pathways for transmission of tRNA binding signals to the active site. Comparative analysis of the unliganded and tRNA-bound structures shows, in detail, how flexibility is built into the enzyme architecture and suggests that the induced-fit transitions are a key underlying determinant of both amino acid and tRNA specificity.
Collapse
Affiliation(s)
- Luke D Sherlin
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
9
|
Bullock TL, Uter N, Nissan TA, Perona JJ. Amino acid discrimination by a class I aminoacyl-tRNA synthetase specified by negative determinants. J Mol Biol 2003; 328:395-408. [PMID: 12691748 DOI: 10.1016/s0022-2836(03)00305-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 2.5 A crystal structure of Escherichia coli glutaminyl-tRNA synthetase in a quaternary complex with tRNA(Gln), an ATP analog and glutamate reveals that the non-cognate amino acid adopts a distinct binding mode within the active site cleft. In contrast to the binding of cognate glutamine, one oxygen of the charged glutamate carboxylate group makes a direct ion-pair interaction with the strictly conserved Arg30 residue located in the first half of the dinucleotide fold domain. The nucleophilic alpha-carboxylate moiety of glutamate is mispositioned with respect to both the ATP alpha-phosphate and terminal tRNA ribose groups, suggesting that a component of amino acid discrimination resides at the catalytic step of the reaction. Further, the other side-chain carboxylate oxygen of glutamate is found in a position identical to that previously proposed to be occupied by the NH(2) group of the cognate glutamine substrate. At this position, the glutamate oxygen accepts hydrogen bonds from the hydroxyl moiety of Tyr211 and a water molecule. These findings demonstrate that amino acid specificity by GlnRS cannot arise from hydrogen bonds donated by the cognate glutamine amide to these same moieties, as previously suggested. Instead, Arg30 functions as a negative determinant to drive binding of non-cognate glutamate into a non-productive orientation. The poorly differentiated cognate amino acid-binding site in GlnRS may be a consequence of the late emergence of this enzyme from the eukaryotic lineage of glutamyl-tRNA synthetases.
Collapse
Affiliation(s)
- Timothy L Bullock
- Department of Chemistry and Biochemistry, and Interdepartmental Program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | | | | | | |
Collapse
|
10
|
|
11
|
Sherman JM, Söll D. Aminoacyl-tRNA synthetases optimize both cognate tRNA recognition and discrimination against noncognate tRNAs. Biochemistry 1996; 35:601-7. [PMID: 8555233 DOI: 10.1021/bi951602b] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Specific protein--nucleic acid interactions are usually the product of sequence-dependent hydrogen bonding. However, in the crystal structure of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) in complex with tRNAGln, leucine 136 (Leu136) stabilizes the disruption of the weak first (U1-A72) base pair in tRNAGln by stacking between A72 and G2. We have demonstrated, by a combined in vivo and in vitro mutational analysis, that Leu136 is important for tRNA specificity despite making no hydrogen bonds with tRNAGln. Both more (L136F) and less (L136V, L136M, L136A, and L136T) mischarging mutants of GlnRS have been identified. GlnRS(L136F) is more mischarging and less specific than wild-type GlnRS in vivo, due not to an increased affinity for the noncognate tRNAs but to a decreased affinity for tRNAGln. Also, unlike other mischarging mutants of GlnRS that have been characterized, it does not exhibit generally relaxed tRNA specificity in vivo and mischarges only a subset of the tRNAs tested. A possible sequence preference for a Py1-Pu72/Pu2-Py71 combination is suggested. The L136A/M/T/V mutants are the first GlnRS variants, including wild-type, expressed on pBR322 which no longer mischarge tyrT(UAG) in vivo. We have shown that, while the L136A mutant is less mischarging than wild-type both in vivo and in vitro, it is not more specific as it also exhibits reduced affinity for its cognate glutamine tRNA. On the basis of these results, we suggest that the aminoacyl-tRNA synthetases have evolved to balance cognate tRNA recognition and discrimination against noncognate tRNAs.
Collapse
MESH Headings
- Base Sequence
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Glutamate-tRNA Ligase/chemistry
- Glutamate-tRNA Ligase/genetics
- Glutamate-tRNA Ligase/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Protein Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Gln/chemistry
- RNA, Transfer, Gln/genetics
- RNA, Transfer, Gln/metabolism
- Substrate Specificity
Collapse
Affiliation(s)
- J M Sherman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | |
Collapse
|
12
|
Lloyd AJ, Thomann HU, Ibba M, Söll D. A broadly applicable continuous spectrophotometric assay for measuring aminoacyl-tRNA synthetase activity. Nucleic Acids Res 1995; 23:2886-92. [PMID: 7659511 PMCID: PMC307126 DOI: 10.1093/nar/23.15.2886] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We describe a convenient, simple and novel continuous spectrophotometric method for the determination of aminoacyl-tRNA synthetase activity. The assay relies upon the measurement of inorganic pyrophosphate generated in the first step of the aminoacylation of a tRNA. Pyrophosphate release is coupled to inorganic pyrophosphatase, to generate phosphate, which in turn is used as the substrate of purine nucleoside phosphorylase to catalyze the N-glycosidic cleavage of 2-amino 6-mercapto 7-methylpurine ribonucleoside. Of the reaction products, ribose 1-phosphate and 2-amino 6-mercapto 7-methylpurine, the latter has a high absorbance at 360 nm relative to the nucleoside and hence provides a spectrophotometric signal that can be continuously followed. The non-destructive nature of the spectrophotometric assay allowed the re-use of the tRNAs in question in successive experiments. The usefulness of this method was demonstrated for glutaminyl-tRNA synthetase (GlnRS) and tryptophanyl-tRNA synthetase. Initial velocities measured using this assay correlate closely with those assayed by quantitation of [3H]Gln-tRNA or [14C]Trp-tRNA formation respectively. In both cases amino acid transfer from the aminoacyl adenylate to the tRNA represents the rate determining step. In addition, aminoacyl adenylate formation by aspartyl-tRNA synthetase was followed and provided a more sensitive means of active site titration than existing techniques. Finally, this novel method was used to provide direct evidence for the cooperativity of tRNA and ATP binding to GlnRS.
Collapse
Affiliation(s)
- A J Lloyd
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | |
Collapse
|
13
|
Conley J, Sherman J, Thomann HU, Söill D. Domains ofE. ColiGlutaminyl-tRNA Synthetase Disordered in the Crystal Structure Are Essential for Function or Stability. ACTA ACUST UNITED AC 1994. [DOI: 10.1080/15257779408012173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Giegé R, Puglisi JD, Florentz C. tRNA structure and aminoacylation efficiency. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993; 45:129-206. [PMID: 8341800 DOI: 10.1016/s0079-6603(08)60869-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- R Giegé
- Unité Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | |
Collapse
|
15
|
Sherman JM, Rogers MJ, Söll D. Competition of aminoacyl-tRNA synthetases for tRNA ensures the accuracy of aminoacylation. Nucleic Acids Res 1992; 20:2847-52. [PMID: 1377381 PMCID: PMC336931 DOI: 10.1093/nar/20.11.2847] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The accuracy of protein biosynthesis rests on the high fidelity with which aminoacyl-tRNA synthetases discriminate between tRNAs. Correct aminoacylation depends not only on identity elements (nucleotides in certain positions) in tRNA (1), but also on competition between different synthetases for a given tRNA (2). Here we describe in vivo and in vitro experiments which demonstrate how variations in the levels of synthetases and tRNA affect the accuracy of aminoacylation. We show in vivo that concurrent overexpression of Escherichia coli tyrosyl-tRNA synthetase abolishes misacylation of supF tRNA(Tyr) with glutamine in vivo by overproduced glutaminyl-tRNA synthetase. In an in vitro competition assay, we have confirmed that the overproduction mischarging phenomenon observed in vivo is due to competition between the synthetases at the level of aminoacylation. Likewise, we have been able to examine the role competition plays in the identity of a non-suppressor tRNA of ambiguous identity, tRNA(Glu). Finally, with this assay, we show that the identity of a tRNA and the accuracy with which it is recognized depend on the relative affinities of the synthetases for the tRNA. The in vitro competition assay represents a general method of obtaining qualitative information on tRNA identity in a competitive environment (usually only found in vivo) during a defined step in protein biosynthesis, aminoacylation. In addition, we show that the discriminator base (position 73) and the first base of the anticodon are important for recognition by E. coli tyrosyl-tRNA synthetase.
Collapse
Affiliation(s)
- J M Sherman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | | | | |
Collapse
|
16
|
Bhattacharyya T, Bhattacharyya A, Roy S. A fluorescence spectroscopic study of glutaminyl-tRNA synthetase from Escherichia coli and its implications for the enzyme mechanism. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 200:739-45. [PMID: 1915346 DOI: 10.1111/j.1432-1033.1991.tb16239.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Interaction between Escherichia coli glutaminyl-tRNA synthetase (GlnRS) and its substrates have been studied by fluorescence quenching. In the absence of other substrates, glutamine, tRNA(Gln) and ATP bind with dissociation constants of 460, 0.22 and 180 microM, respectively. The presence of other substrates has either no effect or, at best a weak effect, on binding of ligands. Attempts to isolate enzyme-bound aminoacyl adenylate did not succeed. Binding of the phosphodiester, 5'-(methyl)adenosine monophosphate (MeAMP), to GlnRS was studied by fluorescence quenching and radioactive-ligand binding. tRNA also only has a weak effect on phosphodiester binding. Selectively pyrene-labeled GlnRS was used to obtain shape and size information for free GlnRS. A comparison with the GlnRS shape in the GlnRS/tRNA(Gln) crystal structure indicates that no major change in shape and size occurs upon tRNA(Gln) binding to GlnRS. 5,5'-Bis(8-anilino-1-naphthalene sulfonate) (bis-ANS), a non-covalent fluorescent probe, was also used to probe for conformational changes in GlnRS. This probe also indicated that no major conformational change occurs upon tRNA(Gln) binding. We conclude that lack of tRNA-independent pyrophosphate-exchange activity in this enzyme is not a result of either lack of glutamine or ATP binding in the absence of tRNA, or formation of aminoacyl adenylate and slow release of pyrophosphate. A conformational change is implied upon tRNA binding, which promotes pyrophosphate exchange. Fluorescence studies indicate that this conformational change must be limited and local in nature.
Collapse
|
17
|
Biosynthesis of Δ-aminolevulinate in greening barley leaves. VIII: Purification and characterization of the glutamate-tRNA ligase. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf02910432] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Thomes JC, Ratinaud MH, Julien R. Dimeric glutamyl-tRNA synthetases from wheat. Kinetic properties and functional structures. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 135:479-84. [PMID: 6617645 DOI: 10.1111/j.1432-1033.1983.tb07676.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Michaelis constants in the tRNA aminoacylation reaction have been studied for the three dimeric glutamyl-tRNA synthetases C, P and E. The values were found to be: for tRNA, 0.20 microM, and 0.44 microM; for glutamic acid, 10 microM, 83 microM and 83 microM; for MgATP, 0.46 mM, 0.38 mM and 0.26 mM. MgATP concentrations higher than 2 mM induce pronounced inhibition. The presence of the cognate tRNA is required for [32P]PPi-ATP isotopic exchange. In the absence of tRNA no hyperbolic saturation of the enzymes by glutamic acid occurs in our experimental conditions. Analysis of the enzymic activity as a function of enzyme concentration leads to the conclusion that the active forms are dimers which are in equilibrium with inactive monomers. The values of the dissociation constants Kd were found to be 43 nM, 53 nM and 87 nM for glutamyl-tRNA synthetases C, P and E respectively.
Collapse
|
19
|
Ratinaud MH, Thomes JC, Julien R. Glutamyl-tRNA synthetases from wheat. Isolation and characterization of three dimeric enzymes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 135:471-7. [PMID: 6617644 DOI: 10.1111/j.1432-1033.1983.tb07675.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Three dimeric glutamyl-tRNA synthetases (GluRS) were isolated from extracts of quiescent wheat germ and wheat chloroplasts. The chloroplast enzyme (Mr = 110 000), called GluRS C, exhibits a prokaryotic (Escherichia coli) tRNA specificity. Two enzymes were found in the quiescent germ and were separated on phosphocellulose P11: one called GluRS P, probably the mitochondrial enzyme, has the same tRNA specificity as GluRS C; the other, called GluRS E, has eukaryotic (wheat germ) tRNA specificity. Both enzymes exhibit a molecular weight close to 160 000. Each of these enzymes co-eluate on hydroxyapatite and phosphocellulose chromatographies with an unstable active monomer whose molecular weight is approximately half that of the corresponding dimer. Two assumptions are discussed about these monomers.
Collapse
|
20
|
The monomeric glutamyl-tRNA synthetase from Bacillus subtilis 168 and its regulatory factor. Their purification, characterization, and the study of their interaction. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)33112-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Hoben P, Royal N, Cheung A, Yamao F, Biemann K, Söll D. Escherichia coli glutaminyl-tRNA synthetase. II. Characterization of the glnS gene product. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)33811-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
22
|
Macromolecular complexes from sheep and rabbit containing seven aminoacyl-tRNA synthetases. III. Assignment of aminoacyl-tRNA synthetase activities to the polypeptide components of the complexes. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)33932-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
|
24
|
Kern D, Lapointe J. The catalytic mechanism of glutamyl-tRNA synthetase of Escherichia coli. A steady-state kinetic investigation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1981; 115:29-38. [PMID: 7014220 DOI: 10.1111/j.1432-1033.1981.tb06193.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The sequence of substrate binding and of end-product dissociation at the steady state of the catalytic process of tRNAGlu aminoacylation by glutamyl-tRNA synthetase from Escherichia coli has been investigated using bisubstrate kinetics, dead-end and end-product inhibition studies. The nature of the kinetic patterns indicates that ATP and tRNAGlu bind randomly to the free enzyme, whereas glutamate binds only to the ternary enzyme . tRNAGlu . ATP complex. Binding of ATP to the enzyme hinders that of tRNAGlu and vice versa. After interconversion of the quaternary enzyme . substrates complex the end-products dissociate in the following order: PPi first, AMP second and Glu-tRNA last. In addition to its role as substrate and as effector with ATP for the binding of glutamate, tRNAGlu promotes the catalytically active enzyme state. Whereas at saturating tRNAGlu concentration the catalysis is rate-determining, this conformational change can be rate-determining at low tRNAGlu concentrations. The results are discussed in the light of the two-step aminoacylation pathway catalyzed by this synthetase.
Collapse
|
25
|
|
26
|
Potier S, Robbe-Saul S, Boulanger Y. Structural studies on aminoacyl-tRNA synthetases. A tentative correlation between the subunit size and the occurrence of repeated sequences. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 624:130-41. [PMID: 6996739 DOI: 10.1016/0005-2795(80)90232-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent studies have shown that those synthetases with subunits greater than 85,000 daltons contain extensive repeated sequences, whilst those with small subunits (40,000 daltons) do not. We have undertaken a comparative study of four aminoacyl-tRNA synthetases (glutamyl-, arginyl-, valyl-, and phenylalanyl-tRNA synthetases) with subunit sizes ranging from 56,000 to 130,000 daltons in an attempt to correlate the occurrence and extent of the repeats with the length of the polypeptide chain. Our results show that monomeric glutamyl-tRNA synthetase from Escherichia coli (56,000 daltons) contains few repeated sequences, whereas both subunits of yeast phenylalanyl-tRNA synthetase (alpha, 73,000 daltons; beta, 62,000 daltons) and yeast arginyl-tRNA synthetase (74,000 daltons) do have a significant amount of repeats. Thus 56,000 dalton appears to be the minimum size compatible with the existence of such repeats.
Collapse
|
27
|
Kern D, Lapointe J. Catalytic mechanism of glutamyl-tRNA synthetase from Escherichia coli. Reaction pathway in the aminoacylation of tRNAGlu. Biochemistry 1980; 19:3060-8. [PMID: 6249345 DOI: 10.1021/bi00554a035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|