1
|
Jeong S, Kim J. Structural snapshots of CmoB in various states during wobble uridine modification of tRNA. Biochem Biophys Res Commun 2020; 534:604-609. [PMID: 33213836 DOI: 10.1016/j.bbrc.2020.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
CmoB utilizes carboxy-S-adenosyl-l-methionine (CxSAM) to carry out unusual carboxymethyl transfer to form 5-carboxymethoxyuridine (cmo5U) of several tRNA species in Gram-negative bacteria. In this report, we present three X-ray crystal structures of CmoB from Vibrio vulnificus representing different states in the course of the reaction pathway; i.e., apo-, substrate-bound, and product-bound forms. Especially, the crystal structure of apo-CmoB unveils a novel open state of the enzyme, capturing unprecedented conformational dynamics around the substrate-binding site. The apo-structure demonstrates that the open conformation favors the release of CxSAM thus representing an inactive form. Our crystal structures of CmoB complexed with CxSAM and S-adenosyl-l-homocysteine (SAH) and combined binding assay results support the proposed mechanism underlying the cofactor selectivity, where CmoB preferentially senses negative charge around amino acid residues Lys-91, Tyr-200, and Arg-315.
Collapse
Affiliation(s)
- Sehwang Jeong
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Jungwook Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| |
Collapse
|
2
|
Identification and Characterization of Genes Required for 5-Hydroxyuridine Synthesis in Bacillus subtilis and Escherichia coli tRNA. J Bacteriol 2019; 201:JB.00433-19. [PMID: 31358606 DOI: 10.1128/jb.00433-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022] Open
Abstract
In bacteria, tRNAs that decode 4-fold degenerate family codons and have uridine at position 34 of the anticodon are typically modified with either 5-methoxyuridine (mo5U) or 5-methoxycarbonylmethoxyuridine (mcmo5U). These modifications are critical for extended recognition of some codons at the wobble position. Whereas the alkylation steps of these modifications have been described, genes required for the hydroxylation of U34 to give 5-hydroxyuridine (ho5U) remain unknown. Here, a number of genes in Escherichia coli and Bacillus subtilis are identified that are required for wild-type (wt) levels of ho5U. The yrrMNO operon is identified in B. subtilis as important for the biosynthesis of ho5U. Both yrrN and yrrO are homologs to peptidase U32 family genes, which includes the rlhA gene required for ho5C synthesis in E. coli Deletion of either yrrN or yrrO, or both, gives a 50% reduction in mo5U tRNA levels. In E. coli, yegQ was found to be the only one of four peptidase U32 genes involved in ho5U synthesis. Interestingly, this mutant shows the same 50% reduction in (m)cmo5U as that observed for mo5U in the B. subtilis mutants. By analyzing the genomic context of yegQ homologs, the ferredoxin YfhL is shown to be required for ho5U synthesis in E. coli to the same extent as yegQ Additional genes required for Fe-S biosynthesis and biosynthesis of prephenate give the same 50% reduction in modification. Together, these data suggest that ho5U biosynthesis in bacteria is similar to that of ho5C, but additional genes and substrates are required for complete modification.IMPORTANCE Modified nucleotides in tRNA serve to optimize both its structure and function for accurate translation of the genetic code. The biosynthesis of these modifications has been fertile ground for uncovering unique biochemistry and metabolism in cells. In this work, genes that are required for a novel anaerobic hydroxylation of uridine at the wobble position of some tRNAs are identified in both Bacillus subtilis and Escherichia coli These genes code for Fe-S cluster proteins, and their deletion reduces the levels of the hydroxyuridine by 50% in both organisms. Additional genes required for Fe-S cluster and prephenate biosynthesis and a previously described ferredoxin gene all display a similar reduction in hydroxyuridine levels, suggesting that still other genes are required for the modification.
Collapse
|
3
|
Masuda I, Takase R, Matsubara R, Paulines MJ, Gamper H, Limbach PA, Hou YM. Selective terminal methylation of a tRNA wobble base. Nucleic Acids Res 2019; 46:e37. [PMID: 29361055 PMCID: PMC5909439 DOI: 10.1093/nar/gky013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022] Open
Abstract
Active tRNAs are extensively post-transcriptionally modified, particularly at the wobble position 34 and the position 37 on the 3′-side of the anticodon. The 5-carboxy-methoxy modification of U34 (cmo5U34) is present in Gram-negative tRNAs for six amino acids (Ala, Ser, Pro, Thr, Leu and Val), four of which (Ala, Ser, Pro and Thr) have a terminal methyl group to form 5-methoxy-carbonyl-methoxy-uridine (mcmo5U34) for higher reading-frame accuracy. The molecular basis for the selective terminal methylation is not understood. Many cmo5U34-tRNAs are essential for growth and cannot be substituted for mutational analysis. We show here that, with a novel genetic approach, we have created and isolated mutants of Escherichia coli tRNAPro and tRNAVal for analysis of the selective terminal methylation. We show that substitution of G35 in the anticodon of tRNAPro inactivates the terminal methylation, whereas introduction of G35 to tRNAVal confers it, indicating that G35 is a major determinant for the selectivity. We also show that, in tRNAPro, the terminal methylation at U34 is dependent on the primary m1G methylation at position 37 but not vice versa, indicating a hierarchical ranking of modifications between positions 34 and 37. We suggest that this hierarchy provides a mechanism to ensure top performance of a tRNA inside of cells.
Collapse
Affiliation(s)
- Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ryuichi Takase
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ryuma Matsubara
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mellie June Paulines
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
4
|
Dual pathways of tRNA hydroxylation ensure efficient translation by expanding decoding capability. Nat Commun 2019; 10:2858. [PMID: 31253794 PMCID: PMC6599085 DOI: 10.1038/s41467-019-10750-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/30/2019] [Indexed: 11/09/2022] Open
Abstract
In bacterial tRNAs, 5-carboxymethoxyuridine (cmo5U) and its derivatives at the first position of the anticodon facilitate non-Watson-Crick base pairing with guanosine and pyrimidines at the third positions of codons, thereby expanding decoding capabilities. However, their biogenesis and physiological roles remained to be investigated. Using reverse genetics and comparative genomics, we identify two factors responsible for 5-hydroxyuridine (ho5U) formation, which is the first step of the cmo5U synthesis: TrhP (formerly known as YegQ), a peptidase U32 family protein, is involved in prephenate-dependent ho5U formation; and TrhO (formerly known as YceA), a rhodanese family protein, catalyzes oxygen-dependent ho5U formation and bypasses cmo5U biogenesis in a subset of tRNAs under aerobic conditions. E. coli strains lacking both trhP and trhO exhibit a temperature-sensitive phenotype, and decode codons ending in G (GCG and UCG) less efficiently than the wild-type strain. These findings confirm that tRNA hydroxylation ensures efficient decoding during protein synthesis.
Collapse
|
5
|
Devi M, Lyngdoh RD. Favored and less favored codon–anticodon duplexes arising from the GC codon family box encoding for alanine: some computational perspectives. J Biomol Struct Dyn 2017; 36:1029-1049. [DOI: 10.1080/07391102.2017.1308886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Martina Devi
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - R.H. Duncan Lyngdoh
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
6
|
Sakai Y, Miyauchi K, Kimura S, Suzuki T. Biogenesis and growth phase-dependent alteration of 5-methoxycarbonylmethoxyuridine in tRNA anticodons. Nucleic Acids Res 2015; 44:509-23. [PMID: 26681692 PMCID: PMC4737166 DOI: 10.1093/nar/gkv1470] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/02/2015] [Indexed: 12/22/2022] Open
Abstract
Post-transcriptional modifications at the anticodon first (wobble) position of tRNA play critical roles in precise decoding of genetic codes. 5-carboxymethoxyuridine (cmo5U) and its methyl ester derivative 5-methoxycarbonylmethoxyuridine (mcmo5U) are modified nucleosides found at the anticodon wobble position in several tRNAs from Gram-negative bacteria. cmo5U and mcmo5U facilitate non-Watson–Crick base pairing with guanosine and pyrimidines at the third positions of codons, thereby expanding decoding capabilities. By mass spectrometric analyses of individual tRNAs and a shotgun approach of total RNA from Escherichia coli, we identified mcmo5U as a major modification in tRNAAla1, tRNASer1, tRNAPro3 and tRNAThr4; by contrast, cmo5U was present primarily in tRNALeu3 and tRNAVal1. In addition, we discovered 5-methoxycarbonylmethoxy-2′-O-methyluridine (mcmo5Um) as a novel but minor modification in tRNASer1. Terminal methylation frequency of mcmo5U in tRNAPro3 was low (≈30%) in the early log phase of cell growth, gradually increased as growth proceeded and reached nearly 100% in late log and stationary phases. We identified CmoM (previously known as SmtA), an AdoMet-dependent methyltransferase that methylates cmo5U to form mcmo5U. A luciferase reporter assay based on a +1 frameshift construct revealed that terminal methylation of mcmo5U contributes to the decoding ability of tRNAAla1.
Collapse
Affiliation(s)
- Yusuke Sakai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoshi Kimura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
7
|
Mandal D, Köhrer C, Su D, Babu IR, Chan CT, Liu Y, Söll D, Blum P, Kuwahara M, Dedon PC, RajBhandary UL. Identification and codon reading properties of 5-cyanomethyl uridine, a new modified nucleoside found in the anticodon wobble position of mutant haloarchaeal isoleucine tRNAs. RNA (NEW YORK, N.Y.) 2014; 20:177-88. [PMID: 24344322 PMCID: PMC3895270 DOI: 10.1261/rna.042358.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Most archaea and bacteria use a modified C in the anticodon wobble position of isoleucine tRNA to base pair with A but not with G of the mRNA. This allows the tRNA to read the isoleucine codon AUA without also reading the methionine codon AUG. To understand why a modified C, and not U or modified U, is used to base pair with A, we mutated the C34 in the anticodon of Haloarcula marismortui isoleucine tRNA (tRNA2(Ile)) to U, expressed the mutant tRNA in Haloferax volcanii, and purified and analyzed the tRNA. Ribosome binding experiments show that although the wild-type tRNA2(Ile) binds exclusively to the isoleucine codon AUA, the mutant tRNA binds not only to AUA but also to AUU, another isoleucine codon, and to AUG, a methionine codon. The G34 to U mutant in the anticodon of another H. marismortui isoleucine tRNA species showed similar codon binding properties. Binding of the mutant tRNA to AUG could lead to misreading of the AUG codon and insertion of isoleucine in place of methionine. This result would explain why most archaea and bacteria do not normally use U or a modified U in the anticodon wobble position of isoleucine tRNA for reading the codon AUA. Biochemical and mass spectrometric analyses of the mutant tRNAs have led to the discovery of a new modified nucleoside, 5-cyanomethyl U in the anticodon wobble position of the mutant tRNAs. 5-Cyanomethyl U is present in total tRNAs from euryarchaea but not in crenarchaea, eubacteria, or eukaryotes.
Collapse
MESH Headings
- Anticodon/genetics
- Base Pairing
- Base Sequence
- Codon/genetics
- Escherichia coli/genetics
- Haloarcula marismortui/genetics
- Haloferax/genetics
- Molecular Structure
- Point Mutation
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Bacterial/genetics
- RNA, Fungal/genetics
- RNA, Transfer, Ile/chemistry
- RNA, Transfer, Ile/genetics
- RNA, Transfer, Ile/metabolism
- Ribosomes/chemistry
- Saccharomyces cerevisiae/genetics
- Sulfolobus/genetics
- Transfer RNA Aminoacylation
- Uridine/analogs & derivatives
- Uridine/chemistry
- Uridine/genetics
Collapse
Affiliation(s)
- Debabrata Mandal
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Dan Su
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - I. Ramesh Babu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Clement T.Y. Chan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yuchen Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Paul Blum
- School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska 68508, USA
| | - Masayasu Kuwahara
- Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Uttam L. RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Corresponding authorE-mail
| |
Collapse
|
8
|
Shao ZQ, Zhang YM, Feng XY, Wang B, Chen JQ. Synonymous codon ordering: a subtle but prevalent strategy of bacteria to improve translational efficiency. PLoS One 2012; 7:e33547. [PMID: 22432034 PMCID: PMC3303843 DOI: 10.1371/journal.pone.0033547] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/12/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In yeast coding sequences, once a particular codon has been used, subsequent occurrence of the same amino acid tends to use codons sharing the same tRNA. Such a phenomenon of co-tRNA codons pairing bias (CTCPB) is also found in some other eukaryotes but it is not known whether it occurs in prokaryotes. METHODOLOGY/PRINCIPAL FINDINGS In this study, we focused on a total of 773 bacterial genomes to investigate their synonymous codon pairing preferences. After calculating the actual frequencies of synonymous codon pairs and comparing them with their expected values, we detected an obvious pairing bias towards identical codon pairs. This seems consistent with the previously reported CTCPB phenomenon, since identical codons are certainly read by the same tRNA. However, among co-tRNA but non-identical codon pairs, only 22 were often found overrepresented, suggesting that many co-tRNA codons actually do not preferentially pair together in prokaryotes. Therefore, the previously reported co-tRNA codons pairing rule needs to be more rigorously defined. The affinity differences between a tRNA anticodon and its readable codons should be taken into account. Moreover, both within-gene-shuffling tests and phylogenetic analyses support the idea that translational selection played an important role in shaping the observed synonymous codon pairing pattern in prokaryotes. CONCLUSIONS Overall, a high level of synonymous codon pairing bias was detected in 73% investigated bacterial species, suggesting the synonymous codon ordering strategy has been prevalently adopted by prokaryotes to improve their translational efficiencies. The findings in this study also provide important clues to better understand the complex dynamics of translational process.
Collapse
Affiliation(s)
| | | | | | - Bin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
- * E-mail: (BW); (JQC)
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
- * E-mail: (BW); (JQC)
| |
Collapse
|
9
|
Kothe U, Rodnina MV. Codon reading by tRNAAla with modified uridine in the wobble position. Mol Cell 2007; 25:167-74. [PMID: 17218280 DOI: 10.1016/j.molcel.2006.11.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/02/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
tRNAs reading four-codon families often have a modified uridine, cmo(5)U(34), at the wobble position of the anticodon. Here, we examine the effects on the decoding mechanism of a cmo(5)U modification in tRNA(1B)(Ala), anticodon C(36)G(35)cmo(5)U(34). tRNA(1B)(Ala) reads its cognate codons in a manner that is very similar to that of tRNA(Phe). As Ala codons are GC rich and Phe codons AU rich, this similarity suggests a uniform decoding mechanism that is independent of the GC content of the codon-anticodon duplex or the identity of the tRNA. The presence of cmo(5)U at the wobble position of tRNA(1B)(Ala) permits fairly efficient reading of non-Watson-Crick and nonwobble bases in the third codon position, e.g., the GCC codon. The ribosome accepts the C-cmo(5)U pair as an almost-correct base pair, unlike third-position mismatches, which lead to the incorporation of incorrect amino acids and are efficiently rejected.
Collapse
Affiliation(s)
- Ute Kothe
- Institute of Physical Biochemistry, University of Witten/Herdecke, 58448 Witten, Germany
| | | |
Collapse
|
10
|
Jukes TH. The amino acid code. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 47:375-432. [PMID: 364940 DOI: 10.1002/9780470122921.ch7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Agris PF, Vendeix FAP, Graham WD. tRNA's wobble decoding of the genome: 40 years of modification. J Mol Biol 2006; 366:1-13. [PMID: 17187822 DOI: 10.1016/j.jmb.2006.11.046] [Citation(s) in RCA: 400] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/06/2006] [Accepted: 11/10/2006] [Indexed: 11/20/2022]
Abstract
The genetic code is degenerate, in that 20 amino acids are encoded by 61 triplet codes. In 1966, Francis Crick hypothesized that the cell's limited number of tRNAs decoded the genome by recognizing more than one codon. The ambiguity of that recognition resided in the third base-pair, giving rise to the Wobble Hypothesis. Post-transcriptional modifications at tRNA's wobble position 34, especially modifications of uridine 34, enable wobble to occur. The Modified Wobble Hypothesis proposed in 1991 that specific modifications of a tRNA wobble nucleoside shape the anticodon architecture in such a manner that interactions were restricted to the complementary base plus a single wobble pairing for amino acids with twofold degenerate codons. However, chemically different modifications at position 34 would expand the ability of a tRNA to read three or even four of the fourfold degenerate codons. One foundation of Crick's Wobble Hypothesis was that a near-constant geometry of canonical base-pairing be maintained in forming all three base-pairs between the tRNA anticodon and mRNA codon on the ribosome. In accepting an aminoacyl-tRNA, the ribosome requires maintenance of a specific geometry for the anticodon-codon base-pairing. However, it is the post-transcriptional modifications at tRNA wobble position 34 and purine 37, 3'-adjacent to the anticodon, that pre-structure the anticodon domain to ensure the correct codon binding. The modifications create both the architecture and the stability needed for decoding through restraints on anticodon stereochemistry and conformational space, and through selective hydrogen bonding. A physicochemical understanding of modified nucleoside contributions to the tRNA anticodon domain architecture and its decoding of the genome has advanced RNA world evolutionary theory, the principles of RNA chemistry, and the application of this knowledge to the introduction of new amino acids to proteins.
Collapse
Affiliation(s)
- Paul F Agris
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA.
| | | | | |
Collapse
|
12
|
Takai K. Classification of the possible pairs between the first anticodon and the third codon positions based on a simple model assuming two geometries with which the pairing effectively potentiates the decoding complex. J Theor Biol 2006; 242:564-80. [PMID: 16764891 DOI: 10.1016/j.jtbi.2006.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 02/11/2006] [Accepted: 04/11/2006] [Indexed: 11/24/2022]
Abstract
Crick's wobble theory states that some specific pairs between the bases at the first position of the anticodon (position 34) and the third position of the codon (position III) are allowed and the others are disallowed during the correct codon recognition. However, later researches have shown that the pairing rule, or the wobble rule, is different from the supposed one. Despite the continuing efforts including computer-aided model building studies and analyses of three-dimensional structures in the crystals of the ribosomes, the structural backgrounds of the wobble rule are still unclear. Here, I classify the possible pairs into 6 classes according to the increases accompanying the formation of the pairs in the potential productivity of the decoding complex on the basis of a simple model that was originally proposed previously and is refined here. In the model, the conformation with the base at position 34 displaced toward the minor groove side from the position for the Watson-Crick pairs is supposed to be equivalent to the conformation with the Watson-Crick pairs. It is also reasoned and supposed that some weak pairs may sometimes be allowed depending on the structural context. It is demonstrated that most of the experimental results reported so far are consistent with the model. I discuss on which experimental facts can be reasoned with the model and which need further explanations. I expect that the model will be a good basis for further understanding of the wobble rule and its structural backgrounds.
Collapse
Affiliation(s)
- Kazuyuki Takai
- Cell-free Science and Technology Research Center, Ehime University, 3, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
13
|
Nishimura S, Watanabe K. The discovery of modified nucleosides from the early days to the present: A personal perspective. J Biosci 2006; 31:465-75. [PMID: 17206067 DOI: 10.1007/bf02705186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Susumu Nishimura
- Center for TARA, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan.
| | | |
Collapse
|
14
|
Sørensen MA, Elf J, Bouakaz E, Tenson T, Sanyal S, Björk GR, Ehrenberg M. Over expression of a tRNA(Leu) isoacceptor changes charging pattern of leucine tRNAs and reveals new codon reading. J Mol Biol 2005; 354:16-24. [PMID: 16236318 DOI: 10.1016/j.jmb.2005.08.076] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2005] [Revised: 08/30/2005] [Accepted: 08/31/2005] [Indexed: 11/15/2022]
Abstract
During mRNA translation, synonymous codons for one amino acid are often read by different isoaccepting tRNAs. The theory of selective tRNA charging predicts greatly varying percentages of aminoacylation among isoacceptors in cells starved for their common amino acid. It also predicts major changes in tRNA charging patterns upon concentration changes of single isoacceptors, which suggests a novel type of translational control of gene expression. We therefore tested the theory by measuring with Northern blots the charging of Leu-tRNAs in Escherichia coli under Leu limitation in response to over expression of tRNA(GAG)(Leu). As predicted, the charged level of tRNA(GAG)(Leu) increased and the charged levels of four other Leu isoacceptors decreased or remained unchanged, but the charged level of tRNA(UAG)(Leu) increased unexpectedly. To remove this apparent inconsistency between theory and experiment we postulated a previously unknown common codon for tRNA(GAG)(Leu) and tRNA(UAG)(Leu). Subsequently, we demonstrated that the tRNA(GAG)(Leu) codon CUU is, in fact, read also by tRNA(UAG)(Leu), due to a uridine-5-oxyacetic acid modification.
Collapse
Affiliation(s)
- Michael A Sørensen
- Department of Molecular Cell Biology, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
15
|
Takai K, Okumura S, Hosono K, Yokoyama S, Takaku H. A single uridine modification at the wobble position of an artificial tRNA enhances wobbling in an Escherichia coli cell-free translation system. FEBS Lett 1999; 447:1-4. [PMID: 10218569 DOI: 10.1016/s0014-5793(99)00255-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5-Methoxyuridine was introduced into the first position of the anticodon of the unmodified form of tRNA(1Ser) from Escherichia coli. The codon reading efficiencies of this tRNA (tRNA(5-methoxyuridine UGA)) relative to those of the unmodified counterpart (tRNA(UGA)) were measured in a cell-free translation system. tRNA(5-methoxyuridine UGA) was more efficient than tRNA(UGA) in the reading of the UCU and UCG codons and was less efficient in the reading of the UCA codon. Thus, the single modification of U to 5-methoxyuridine can enhance the wobble readings.
Collapse
Affiliation(s)
- K Takai
- Department of Industrial Chemistry, Chiba Institute of Technology, Narashino, Japan.
| | | | | | | | | |
Collapse
|
16
|
Takai K, Takaku H, Yokoyama S. Codon-reading specificity of an unmodified form of Escherichia coli tRNA1Ser in cell-free protein synthesis. Nucleic Acids Res 1996; 24:2894-9. [PMID: 8760870 PMCID: PMC146040 DOI: 10.1093/nar/24.15.2894] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Unmodified tRNA molecules are useful for many purposes in cell-free protein biosynthesis, but there is little information about how the lack of tRNA post-transcriptional modifications affects the coding specificity for synonymous codons. In the present study, we prepared an unmodified form of Escherichia coli tRNA1Ser, which originally has the cmo5UGA anticodon (cmo5U = uridine 5-oxyacetic acid) and recognizes the UCU, UCA and UCG codons. The codon specificity of the unmodified tRNA was tested in a cell-free protein synthesis directed by designed mRNAs under competition conditions with the parent tRNA1Ser. It was found that the unmodified tRNA with the UGA anti-codon recognizes the UCA codon nearly as efficiently as the modified tRNA. The unmodified tRNA recognized the UCU codon with low, but detectable efficiency, whereas no recognition of the UCC and UCG codons was detected. Therefore, the absence of modifications makes this tRNA more specific to the UCA codon by remarkably reducing the efficiencies of wobble reading of other synonymous codons, without a significant decrease in the UCA reading efficiency.
Collapse
Affiliation(s)
- K Takai
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Japan
| | | | | |
Collapse
|
17
|
Abstract
A comprehensive listing is made of posttranscriptionally modified nucleosides from RNA reported in the literature through mid-1994. Included are chemical structures, common names, symbols, Chemical Abstracts registry numbers (for ribonucleoside and corresponding base), Chemical Abstracts Index Name, phylogenetic sources, and initial literature citations for structural characterization or occurrence, and for chemical synthesis. The listing is categorized by type of RNA: tRNA, rRNA, mRNA, snRNA, and other RNAs. A total of 93 different modified nucleosides have been reported in RNA, with the largest number and greatest structural diversity in tRNA, 79; and 28 in rRNA, 12 in mRNA, 11 in snRNA and 3 in other small RNAs.
Collapse
Affiliation(s)
- P A Limbach
- Department of Medicinal Chemistry, University of Utah, Salt Lake City 84112
| | | | | |
Collapse
|
18
|
Nishimura S. Studies of modified nucleosides in tRNA; past and future: reflection on my work for the last three decades. Biochimie 1994; 76:1105-8. [PMID: 7748944 DOI: 10.1016/0300-9084(94)90037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- S Nishimura
- Banyu Tsukuba Research Institute in Collaboration with Merck Research Laboratories, Tsukuba, Japan
| |
Collapse
|
19
|
Chapter 9 Modified Uridines in the First Positions of Anti-Codons of TRNAS and Mechanisms of Codon Recognition. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/s0301-4770(08)61495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Yokoyama S, Watanabe T, Murao K, Ishikura H, Yamaizumi Z, Nishimura S, Miyazawa T. Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon. Proc Natl Acad Sci U S A 1985; 82:4905-9. [PMID: 3860833 PMCID: PMC390466 DOI: 10.1073/pnas.82.15.4905] [Citation(s) in RCA: 221] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Proton NMR analyses have been made to elucidate the conformational characteristics of modified nucleotides as found in the first position of the anticodon of tRNA [derivatives of 5-methyl-2-thiouridine 5'-monophosphate (pxm5s2U) and derivatives of 5-hydroxyuridine 5'-monophosphate (pxo5U)]. In pxm5s2U, the C3'-endo form is extraordinarily more stable than the C2'-endo form for the ribose ring, because of the combined effects of the 2-thiocarbonyl group and the 5-substituent. By contrast, in pxo5U, the C2'-endo form is much more stable than the C3'-endo form, because of the interaction between the 5-substituent and the 5'-phosphate group. The enthalpy differences between the C2'-endo form and the C3'-endo form have been obtained as 1.1, -0.7, and 0.1 kcal/mol (1 cal = 4.184 J) for pxm5s2U, pxo5U, and unmodified uridine 5'-monophosphate, respectively. These findings lead to the conclusion that xm5s2U in the first position of the anticodon exclusively takes the C3'-endo form to recognize adenosine (but not uridine) as the third letter of the codon, whereas xo5U takes the C2'-endo form as well as the C3'-endo form to recognize adenosine, guanosine, and uridine as the third letter of the codon on ribosome. Accordingly, the biological significance of such modifications of uridine to xm5s2U/xo5U is in the regulation of the conformational rigidity/flexibility in the first position of the anticodon so as to guarantee the correct and efficient translation of codons in protein biosynthesis.
Collapse
|
21
|
Yokoyama S, Miyazawa T. Molecular conformations and codon recognition of transfer ribonucleic acids as analyzed by nuclear magnetic resonance. J Mol Struct 1985. [DOI: 10.1016/0022-2860(85)80142-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Ehresmann C, Ehresmann B, Millon R, Ebel JP, Nurse K, Ofengand J. Cross-linking of the anticodon of Escherichia coli and Bacillus subtilis acetylvalyl-tRNA to the ribosomal P site. Characterization of a unique site in both E. coli 16S and yeast 18S ribosomal RNA. Biochemistry 1984; 23:429-37. [PMID: 6422982 DOI: 10.1021/bi00298a006] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The nucleotide residues involved in the cross-link between P site bound acetylvalyl-tRNA (AcVal-tRNA) and 16-18S rRNA have been identified. This cross-link was formed by irradiation of Escherichia coli or Bacillus subtilis AcVal-tRNA bound to the P site of E. coli ribosomes or by irradiation of E. coli AcVal-tRNA bound to the P site of yeast ribosomes. The three cross-linked RNA heterodimers were obtained in 10-35% purity by disruption of the irradiated ribosome-tRNA complex with sodium dodecyl sulfate followed by sucrose gradient centrifugation. After total digestion with RNase T1, and labeling at either the 5'- or the 3'-end, the cross-linked oligomers could be identified and isolated before and after photolytic splitting of the cross-link. One of the oligomers was shown to be UACACACCG, a unique rRNA nonamer present in an evolutionarily conserved region. This oligomer was found in all three heterodimers. The other oligomer of the dimer had the sequence expected for the RNase T1 product encompassing the anticodon of the tRNA used. The precise site of cross-linking was determined by two novel methods. Bisulfite modification of the oligonucleotide dimer converted all C residues to U, except for any cross-linked C which would be resistant by being part of a cyclobutane dimer. Sequencing gel analysis of the UACACACCG oligomer showed that the C residue protected was the 3'-penultimate C residue, C1400 in E. coli rRNA or C1626 in yeast rRNA.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
23
|
Dirheimer G. Chemical nature, properties, location, and physiological and pathological variations of modified nucleosides in tRNAs. Recent Results Cancer Res 1983; 84:15-46. [PMID: 6342070 DOI: 10.1007/978-3-642-81947-6_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Murao K, Hasegawa T, Ishikura H. Nucleotide sequence of valine tRNA mo5UAC from bacillus subtilis. Nucleic Acids Res 1982; 10:715-8. [PMID: 6801627 PMCID: PMC326177 DOI: 10.1093/nar/10.2.715] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A valine tRNA was purified from Bacillus subtilis W168 by a combined use of several column chromatographic systems. The nucleotide sequence was determined to be pG-G-A-G-G-A-U-U-A-G-C-U-C-A-G-C-D-G-G-G-A-G-A-G-C-A-U-C--G-C-C-U-mo5U-A-C-m6-A -A-G-C-A-G-A-G-G-m7G-U-C-G-G-C-G-G-T-psi-C-G-A-G-C-C-C-G-U-C-A-U-C-C-U-C-C-A-C- C-AOH with the main use of of non-labeled tRNA and with the subsidiary use of [32P]-post-labeled sample. This tRNA contains 5-methoxy-uridine (mo5U) at the wobble position of the anticodon. A binding experiment of valyl-tRNA to ribosome revealed that mo5U is recognized by A and G, and fairly well by U.
Collapse
|
25
|
Björk GR. A novel link between the biosynthesis of aromatic amino acids and transfer RNA modification in Escherichia coli. J Mol Biol 1980; 140:391-410. [PMID: 6160251 DOI: 10.1016/0022-2836(80)90391-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Ferris JP, Joshi PC, Edelson EH, Lawless JG. HCN: a plausible source of purines, pyrimidines and amino acids on the primitive earth. J Mol Evol 1978; 11:293-311. [PMID: 31491 DOI: 10.1007/bf01733839] [Citation(s) in RCA: 153] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dilute (0.1 M) solutions of HCN condense to oligomers at pH 9.2. Hydrolysis of these oligomers yields 4,5-dihydroxypyrimidine, orotic acid, 5-hydroxyuracil, adenine, 4-aminoimidazole-5-carboxamide and amino acids. These results, together with the earlier data, demonstrate that the three main classes of nitrogen-containing biomolecules, purines, pyrimidines and amino acids may have originated from HCN on the primitive earth. The observation of orotic acid and 4-aminoimidazole-5-carboxyamide suggests that the contemporary biosynthetic pathways for nucleotides may have evolved from the compounds released on hydrolysis of HCN oligomers.
Collapse
|
27
|
|
28
|
Weissenbach J, Dirheimer G. Pairing properties of the methylester of 5-carboxymethyl uridine in the wobble position of yeast tRNA3Arg. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 518:530-4. [PMID: 350282 DOI: 10.1016/0005-2787(78)90171-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
At optimum magnesium concentration (10 mM) both yeast tRNA1Arg and tRNA3Arg are able to bind to poly (A,G) and A-G-A in presence of Escherichia coli robisomes. With A-G-G only tRNA1Arg ginds, wherea tRNA3Arg (anticodon mcm5 U-C-U) is not bound. This result means that the methylcarboxymethyl substituant in position 5 of U prevents its wobble with G.
Collapse
|
29
|
|
30
|
Murao K, Hasegawa T, Ishikura H. 5-methoxyuridine: a new minor constituent located in the first position of the anticodon of tRNAAla, tRNAThr, and tRNAVal from Bacillus subtilis. Nucleic Acids Res 1976; 3:2851-60. [PMID: 825836 PMCID: PMC343132 DOI: 10.1093/nar/3.10.2851] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The sequences of the anticodon of tRNAAla, tRNAThr, and tRNAVal from Bacillus subtilis W 168 were N-G-C, N-G-U, and N-A-C, respectively. A new minor constituent, N, occupied the first position of the anticodon of each tRNA. N was indentified as 5-methoxyuridine (mo5U, Figure 1) by comparison of its UV absorption spectra, Rf values in thin-layer chromatography using several solvent systems and mass spectra with those of chemically synthesized specimen.
Collapse
|
31
|
Morikawa K, Torii K, Iitaka Y, Tsuboi M, Nishimura S. Crystal and molecular structure of the methyl ester of uridin-5-oxyacetic acid: a minor constituent of Escherichia coli tRNAs. FEBS Lett 1974; 48:279-82. [PMID: 4611799 DOI: 10.1016/0014-5793(74)80486-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Gray MW. A method for the quantitative analysis and preparative isolation of N-(N-methyl-N-(9-beta-D-ribofuranosylpurin-6-yl)carbamoyl) threonine--a modified nucleoside present in transfer RNA. Anal Biochem 1974; 62:91-101. [PMID: 4611275 DOI: 10.1016/0003-2697(74)90370-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Williams RJ, Nagel W, Roe B, Dudock B. Primary structure of E. coli alanine transfer RNA: relation to the yeast phenylalanyl tRNA synthetase recognition site. Biochem Biophys Res Commun 1974; 60:1215-21. [PMID: 4607604 DOI: 10.1016/0006-291x(74)90328-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
|
35
|
Weiss GB. Translational control of protein synthesis by tRNA unrelated to changes in tRNA concentration. J Mol Evol 1973; 2:199-204. [PMID: 4620076 DOI: 10.1007/bf01654000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
Egan BZ. Separation of oligonucleotides by reversed-phase chromatography. BIOCHIMICA ET BIOPHYSICA ACTA 1973; 299:245-52. [PMID: 4706452 DOI: 10.1016/0005-2787(73)90347-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
Randerath E, Yu CT, Randerath K. Base analysis of ribopolynucleotides by chemical tritium labeling: a methodological study with model nucleosides and purified tRNA species. Anal Biochem 1972; 48:172-98. [PMID: 4339367 DOI: 10.1016/0003-2697(72)90181-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Murao K, Tanabe T, Ishii F, Namiki M, Nishimura S. Primary sequence of arginine transfer RNA from Escherichia coli. Biochem Biophys Res Commun 1972; 47:1332-7. [PMID: 4557171 DOI: 10.1016/0006-291x(72)90218-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Simarov BV, Mironova LN, Inge-Vechtomov SG. Nonsense-missense suppression in yeast. MOLECULAR & GENERAL GENETICS : MGG 1971; 113:302-7. [PMID: 4947371 DOI: 10.1007/bf00272330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Koenig WA, Smith LC, Crain PF, McCloskey JA. Mass spectrometry of trifluoroacetyl derivatives of nucleosides and hydrolysates of deoxyribonucleic acid. Biochemistry 1971; 10:3968-79. [PMID: 4334285 DOI: 10.1021/bi00797a026] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Ishikura H, Yamada Y, Nishimura S. The nucleotide sequence of a serine tRNA from Escherichia coli. FEBS Lett 1971; 16:68-70. [PMID: 11945903 DOI: 10.1016/0014-5793(71)80688-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- H Ishikura
- Laboratory of Biochemistry, Institute for Hard Tissue Research, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
42
|
Hélène C, Brun F, Yaniv M. Fluorescence studies of interactions between Escherichia coli valyl-tRNA synthetase and its substrates. J Mol Biol 1971; 58:349-56. [PMID: 4932655 DOI: 10.1016/0022-2836(71)90251-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
43
|
Ishikura H, Yamada Y, Nishimura S. Structure of serine tRNA from Escherichia coli. I. Purification of serine tRNA's with different codon responses. BIOCHIMICA ET BIOPHYSICA ACTA 1971; 228:471-81. [PMID: 4925825 DOI: 10.1016/0005-2787(71)90052-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
44
|
Jukes TH, Gatlin L. Recent studies concerning the coding mechanism. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1971; 11:303-50. [PMID: 4934249 DOI: 10.1016/s0079-6603(08)60331-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
45
|
Tumaitis TD, Lane BG. Differential labelling of the carboxymethyl and methyl substituents of 5-carboxymethyluridine methyl ester, a trace nucleoside constituent of yeast transfer RNA. BIOCHIMICA ET BIOPHYSICA ACTA 1970; 224:391-403. [PMID: 5498072 DOI: 10.1016/0005-2787(70)90572-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
46
|
Kuchino Y, Nishimura S. Nucleotide sequence specificities of guanylate residue-specific tRNA methylases from rat liver. Biochem Biophys Res Commun 1970; 40:306-13. [PMID: 4919960 DOI: 10.1016/0006-291x(70)91010-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|