1
|
Wang H, Liu S, Sun Y, Chen C, Hu Z, Li Q, Long J, Yan Q, Liang J, Lin Y, Yang S, Lin M, Liu X, Wang H, Yu J, Yi F, Tan Y, Yang Y, Chen N, Ai Q. Target modulation of glycolytic pathways as a new strategy for the treatment of neuroinflammatory diseases. Ageing Res Rev 2024; 101:102472. [PMID: 39233146 DOI: 10.1016/j.arr.2024.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
Neuroinflammation is an innate and adaptive immune response initiated by the release of inflammatory mediators from various immune cells in response to harmful stimuli. While initially beneficial and protective, prolonged or excessive neuroinflammation has been identified in clinical and experimental studies as a key pathological driver of numerous neurological diseases and an accelerant of the aging process. Glycolysis, the metabolic process that converts glucose to pyruvate or lactate to produce adenosine 5'-triphosphate (ATP), is often dysregulated in many neuroinflammatory disorders and in the affected nerve cells. Enhancing glucose availability and uptake, as well as increasing glycolytic flux through pharmacological or genetic manipulation of glycolytic enzymes, has shown potential protective effects in several animal models of neuroinflammatory diseases. Modulating the glycolytic pathway to improve glucose metabolism and ATP production may help alleviate energy deficiencies associated with these conditions. In this review, we examine six neuroinflammatory diseases-stroke, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and depression-and provide evidence supporting the role of glycolysis in their treatment. We also explore the potential link between inflammation-induced aging and glycolysis. Additionally, we briefly discuss the critical role of glycolysis in three types of neuronal cells-neurons, microglia, and astrocytes-within physiological processes. This review highlights the significance of glycolysis in the pathology of neuroinflammatory diseases and its relevance to the aging process.
Collapse
Affiliation(s)
- Hanlong Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ziyi Hu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qinqin Li
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huiqin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingbo Yu
- Technology Innovation Center/National Key Laboratory Breeding Base of Chinese Medicine Powders and Innovative Drugs, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
2
|
Rahaman I, Ellis HD, Chang C, Mudiyanselage DH, Xu M, Da B, Fu H, Zhao Y, Fu K. Epitaxial Growth of Ga 2O 3: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4261. [PMID: 39274651 PMCID: PMC11396281 DOI: 10.3390/ma17174261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024]
Abstract
Beta-phase gallium oxide (β-Ga2O3) is a cutting-edge ultrawide bandgap (UWBG) semiconductor, featuring a bandgap energy of around 4.8 eV and a highly critical electric field strength of about 8 MV/cm. These properties make it highly suitable for next-generation power electronics and deep ultraviolet optoelectronics. Key advantages of β-Ga2O3 include the availability of large-size single-crystal bulk native substrates produced from melt and the precise control of n-type doping during both bulk growth and thin-film epitaxy. A comprehensive understanding of the fundamental growth processes, control parameters, and underlying mechanisms is essential to enable scalable manufacturing of high-performance epitaxial structures. This review highlights recent advancements in the epitaxial growth of β-Ga2O3 through various techniques, including Molecular Beam Epitaxy (MBE), Metal-Organic Chemical Vapor Deposition (MOCVD), Hydride Vapor Phase Epitaxy (HVPE), Mist Chemical Vapor Deposition (Mist CVD), Pulsed Laser Deposition (PLD), and Low-Pressure Chemical Vapor Deposition (LPCVD). This review concentrates on the progress of Ga2O3 growth in achieving high growth rates, low defect densities, excellent crystalline quality, and high carrier mobilities through different approaches. It aims to advance the development of device-grade epitaxial Ga2O3 thin films and serves as a crucial resource for researchers and engineers focused on UWBG semiconductors and the future of power electronics.
Collapse
Affiliation(s)
- Imteaz Rahaman
- Electrical and Computer Engineering, The University of Utah, Salt Lake City, UT 84112, USA
| | - Hunter D Ellis
- Electrical and Computer Engineering, The University of Utah, Salt Lake City, UT 84112, USA
| | - Cheng Chang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | | | - Mingfei Xu
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Bingcheng Da
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Houqiang Fu
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Yuji Zhao
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Kai Fu
- Electrical and Computer Engineering, The University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Pfleger F, Schwake-Anduschus C. Relevance of Zearalenone and its modified forms in bakery products. Mycotoxin Res 2023:10.1007/s12550-023-00493-3. [PMID: 37322296 PMCID: PMC10393900 DOI: 10.1007/s12550-023-00493-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Zearalenone is a frequently occurring and well-known mycotoxin developed in cereals before and during the harvest period by Fusarium spp. mainly in maize and wheat. In addition to the main form, various modified forms (phase I and II metabolites) were detected, in some cases in high amounts. These modified forms can be harmful for human health due to their different toxicity, which can be much higher compared to the parent toxin. In addition, the parent toxin can be cleaved from the phase I and II metabolites during digestion. A risk of correlated and additive adverse effects of the metabolites of ZEN phase I and II in humans and animals is evident. ZEN is considered in many studies on its occurrence in grain-based foods and some studies are dedicated to the behavior of ZEN during food processing. This is not the case for the ZEN phase I and II metabolites, which are only included in a few occurrence reports. Their effects during food processing is also only sporadically addressed in studies to date. In addition to the massive lack of data on the occurrence and behavior of ZEN modified forms, there is also a lack of comprehensive clarification of the toxicity of the numerous different ZEN metabolites detected to date. Finally, studies on the fate during digestion of the relevant ZEN metabolites will be important in the future to further clarify their relevance in processed foods such as bakery products.
Collapse
Affiliation(s)
- Franz Pfleger
- Association for Cereal Research e.V., Detmold, Germany
| | - Christine Schwake-Anduschus
- Department of Safety and Quality of Cereals, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Detmold, Germany.
| |
Collapse
|
4
|
Ning J, Sun K, Fan X, Jia K, Meng L, Wang X, Li H, Ma R, Liu S, Li F, Wang X. Use of machine learning-based integration to develop an immune-related signature for improving prognosis in patients with gastric cancer. Sci Rep 2023; 13:7019. [PMID: 37120631 PMCID: PMC10148812 DOI: 10.1038/s41598-023-34291-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/27/2023] [Indexed: 05/01/2023] Open
Abstract
Gastric cancer is one of the most common malignancies. Although some patients benefit from immunotherapy, the majority of patients have unsatisfactory immunotherapy outcomes, and the clinical significance of immune-related genes in gastric cancer remains unknown. We used the single-sample gene set enrichment analysis (ssGSEA) method to evaluate the immune cell content of gastric cancer patients from TCGA and clustered patients based on immune cell scores. The Weighted Correlation Network Analysis (WGCNA) algorithm was used to identify immune subtype-related genes. The patients in TCGA were randomly divided into test 1 and test 2 in a 1:1 ratio, and a machine learning integration process was used to determine the best prognostic signatures in the total cohort. The signatures were then validated in the test 1 and the test 2 cohort. Based on a literature search, we selected 93 previously published prognostic signatures for gastric cancer and compared them with our prognostic signatures. At the single-cell level, the algorithms "Seurat," "SCEVAN", "scissor", and "Cellchat" were used to demonstrate the cell communication disturbance of high-risk cells. WGCNA and univariate Cox regression analysis identified 52 prognosis-related genes, which were subjected to 98 machine-learning integration processes. A prognostic signature consisting of 24 genes was identified using the StepCox[backward] and Enet[alpha = 0.7] machine learning algorithms. This signature demonstrated the best prognostic performance in the overall, test1 and test2 cohort, and outperformed 93 previously published prognostic signatures. Interaction perturbations in cellular communication of high-risk T cells were identified at the single-cell level, which may promote disease progression in patients with gastric cancer. We developed an immune-related prognostic signature with reliable validity and high accuracy for clinical use for predicting the prognosis of patients with gastric cancer.
Collapse
Affiliation(s)
- Jingyuan Ning
- Department of Immunology, Immunology Department of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Keran Sun
- Department of Immunology, Immunology Department of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaoqing Fan
- Department of Immunology, Immunology Department of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Keqi Jia
- Department of Pathology, Shijiazhuang People's Hospital, Shijiazhuang, People's Republic of China
| | - Lingtong Meng
- Department of Immunology, Immunology Department of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiuli Wang
- Department of Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Hui Li
- Department of Oncology, Shijiazhuang Fourth Hospital, Shijiazhuang, People's Republic of China
| | - Ruixiao Ma
- Department of Oncology, Shijiazhuang Fourth Hospital, Shijiazhuang, People's Republic of China
| | - Subin Liu
- Department of Oncology, Shijiazhuang Fourth Hospital, Shijiazhuang, People's Republic of China
| | - Feng Li
- Department of Oncology, Shijiazhuang Fourth Hospital, Shijiazhuang, People's Republic of China
| | - Xiaofeng Wang
- Department of Immunology, Immunology Department of Hebei Medical University, Shijiazhuang, People's Republic of China.
- Department of Oncology, Shijiazhuang Fourth Hospital, Shijiazhuang, People's Republic of China.
| |
Collapse
|
5
|
Siddiqui MF, Alam A, Kalmatov R, Mouna A, Villela R, Mitalipova A, Mrad YN, Rahat SAA, Magarde BK, Muhammad W, Sherbaevna SR, Tashmatova N, Islamovna UG, Abuassi MA, Parween Z. Leveraging Healthcare System with Nature-Inspired Computing Techniques: An Overview and Future Perspective. NATURE-INSPIRED INTELLIGENT COMPUTING TECHNIQUES IN BIOINFORMATICS 2023:19-42. [DOI: 10.1007/978-981-19-6379-7_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
|
6
|
Sex hormone binding globulin as a potential drug candidate for liver-related metabolic disorders treatment. Biomed Pharmacother 2022; 153:113261. [PMID: 35738176 DOI: 10.1016/j.biopha.2022.113261] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
Sex hormone binding globulin (SHBG) is a hepatokine that binds to circulating steroid hormones (testosterone, oestradiol) to regulate their concentration in the bloodstream. Recently SHBG was recognized as an essential biomarker for metabolic syndrome (MetS) and hepatic steatosis development. At the hepatic level, the production of SHBG is mainly regulated by sex steroids and thyroxine. Studies of various research groups, including ours, showed that SHBG could be considered a reliable marker of insulin resistance and, therefore, can serve as a predictor of type 2 diabetes. Moreover, increased levels of circulating pro-inflammatory mediators strongly correlate with lowered serum levels of SHBG. This review paper emphasizes the role of SHBG as a potential drug candidate in the course of various metabolic dysfunctions, including non-alcoholic fatty liver disease (NAFLD), obesity, diabetes mellitus and insulin resistance. The studies related to SHBG and its role in the course of metabolic disorders are very limited. Here, we have summarized the most current knowledge about SHBG and its mechanism of action, indicating a novel concept for its possible therapeutic application in the management framework of commonly occurring metabolic dysfunctions.
Collapse
|
7
|
Liu H, Jin P, Quan X, Xie YB, Ma FH, Ma S, Li Y, Kang WZ, Tian YT. Feasibility of totally laparoscopic gastrectomy without prophylactic drains in gastric cancer patients. World J Gastroenterol 2021; 27:4236-4245. [PMID: 34326622 PMCID: PMC8311535 DOI: 10.3748/wjg.v27.i26.4236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Prophylactic drains have been used to remove intraperitoneal collections and detect complications early in open surgery. In the last decades, minimally invasive gastric cancer surgery has been performed worldwide. However, reports on routine prophylactic abdominal drainage after totally laparoscopic distal gastrectomy are few.
AIM To evaluate the feasibility performing totally laparoscopic distal gastrectomy without prophylactic drains in selected patients.
METHODS Data of patients with distal gastric cancer who underwent totally laparoscopic distal gastrectomy with and without prophylactic drainage at China National Cancer Center/Cancer Hospital from February 2018 to August 2019 were reviewed. The outcomes between patients with and without prophylactic drainage were compared.
RESULTS A total of 457 patients who underwent surgery for gastric cancer were identified. Of these, 125 patients who underwent totally laparoscopic distal gastrectomy were included. After propensity score matching, data of 42 pairs were extracted. The incidence of concurrent illness was higher in the drain group (42.9% vs 31.0%, P = 0.258). The overall postoperative complication rates were 19.5% and 10.6% in the drain (n = 76) and no-drain groups (n = 49), respectively; there were no significant differences between the two groups (P > 0.05). The difference between the two groups based on the need for percutaneous catheter drainage was also not significant (9.8% vs 6.4%, P = 0.700). However, patients with a larger body mass index (≥ 29 kg/m2) were prone to postoperative complications (P = 0.042). In addition, the number of days from surgery until the first flatus (4.33 ± 1.24 d vs 3.57 ± 1.85 d, P = 0.029) was greater in the drain group.
CONCLUSION Omitting prophylactic drainage may reduce surgery time and result in faster recovery. Routine prophylactic drains are not necessary in selected patients. A prophylactic drain may be useful in high-risk patients.
Collapse
Affiliation(s)
- Hao Liu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Gastrointestinal Surgery, The Second Hospital, Jilin University, Changchun 130041, Jilin Province, China
| | - Peng Jin
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xu Quan
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yi-Bin Xie
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fu-Hai Ma
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuai Ma
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yang Li
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen-Zhe Kang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan-Tao Tian
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
8
|
Meta-analysis of the responses of laying hens to garlic (Allium sativum) supplementation. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Van Gool A, Corrales F, Čolović M, Krstić D, Oliver-Martos B, Martínez-Cáceres E, Jakasa I, Gajski G, Brun V, Kyriacou K, Burzynska-Pedziwiatr I, Wozniak LA, Nierkens S, Pascual García C, Katrlik J, Bojic-Trbojevic Z, Vacek J, Llorente A, Antohe F, Suica V, Suarez G, t'Kindt R, Martin P, Penque D, Martins IL, Bodoki E, Iacob BC, Aydindogan E, Timur S, Allinson J, Sutton C, Luider T, Wittfooth S, Sammar M. Analytical techniques for multiplex analysis of protein biomarkers. Expert Rev Proteomics 2020; 17:257-273. [PMID: 32427033 DOI: 10.1080/14789450.2020.1763174] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The importance of biomarkers for pharmaceutical drug development and clinical diagnostics is more significant than ever in the current shift toward personalized medicine. Biomarkers have taken a central position either as companion markers to support drug development and patient selection, or as indicators aiming to detect the earliest perturbations indicative of disease, minimizing therapeutic intervention or even enabling disease reversal. Protein biomarkers are of particular interest given their central role in biochemical pathways. Hence, capabilities to analyze multiple protein biomarkers in one assay are highly interesting for biomedical research. AREAS COVERED We here review multiple methods that are suitable for robust, high throughput, standardized, and affordable analysis of protein biomarkers in a multiplex format. We describe innovative developments in immunoassays, the vanguard of methods in clinical laboratories, and mass spectrometry, increasingly implemented for protein biomarker analysis. Moreover, emerging techniques are discussed with potentially improved protein capture, separation, and detection that will further boost multiplex analyses. EXPERT COMMENTARY The development of clinically applied multiplex protein biomarker assays is essential as multi-protein signatures provide more comprehensive information about biological systems than single biomarkers, leading to improved insights in mechanisms of disease, diagnostics, and the effect of personalized medicine.
Collapse
Affiliation(s)
- Alain Van Gool
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Fernado Corrales
- Functional Proteomics Laboratory, Centro Nacional De Biotecnología , Madrid, Spain
| | - Mirjana Čolović
- Department of Physical Chemistry, "Vinča" Institute of Nuclear Sciences, University of Belgrade , Belgrade, Serbia
| | - Danijela Krstić
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade , Belgrade, Serbia
| | - Begona Oliver-Martos
- Neuroimmunology and Neuroinflammation Group. Instituto De Investigación Biomédica De Málaga-IBIMA. UGC Neurociencias, Hospital Regional Universitario De Málaga , Malaga, Spain
| | - Eva Martínez-Cáceres
- Immunology Division, LCMN, Germans Trias I Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, and Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma De Barcelona , Cerdanyola Del Vallès, Spain
| | - Ivone Jakasa
- Laboratory for Analytical Chemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb , Zagreb, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health , Zagreb, Croatia
| | - Virginie Brun
- Université Grenoble Alpes, CEA, Inserm, IRIG, BGE , Grenoble, France
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Biology, The Cyprus School of Molecular Medicine/The Cyprus Institute of Neurology and Genetics , Nicosia, Cyprus
| | - Izabela Burzynska-Pedziwiatr
- Medical Faculty, Department of Biomedical Sciences, Chair of Medical Biology & Department of Structural Biology, Medical University of Lodz , Łódź, Poland
| | - Lucyna Alicja Wozniak
- Medical Faculty, Department of Biomedical Sciences, Chair of Medical Biology & Department of Structural Biology, Medical University of Lodz , Łódź, Poland
| | - Stephan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht & Princess Máxima Center for Pediatric Oncology , Utrecht, The Netherlands
| | - César Pascual García
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST) , Belvaux, Luxembourg
| | - Jaroslav Katrlik
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences , Bratislava, Slovakia
| | - Zanka Bojic-Trbojevic
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy - INEP, University of Belgrade , Belgrade, Serbia
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital , Oslo, Norway
| | - Felicia Antohe
- Proteomics Department, Institute of Cellular Biology and Pathology "N. Simionescu" of the Romanian Academy , Bucharest, Romania
| | - Viorel Suica
- Proteomics Department, Institute of Cellular Biology and Pathology "N. Simionescu" of the Romanian Academy , Bucharest, Romania
| | - Guillaume Suarez
- Center for Primary Care and Public Health (Unisanté), University of Lausanne , Lausanne, Switzerland
| | - Ruben t'Kindt
- Research Institute for Chromatography (RIC) , Kortrijk, Belgium
| | - Petra Martin
- Department of Medical Oncology, Midland Regional Hospital Tullamore/St. James's Hospital , Dublin, Ireland
| | - Deborah Penque
- Human Genetics Department, Instituto Nacional De Saúde Dr Ricardo Jorge, Lisboa, Portugal and Centre for Toxicogenomics and Human Health, Universidade Nova De Lisboa , Lisbon,Portugal
| | - Ines Lanca Martins
- Human Genetics Department, Instituto Nacional De Saúde Dr Ricardo Jorge, Lisboa, Portugal and Centre for Toxicogenomics and Human Health, Universidade Nova De Lisboa , Lisbon,Portugal
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Eda Aydindogan
- Department of Chemistry, Graduate School of Sciences and Engineering, Koç University , Istanbul, Turkey
| | - Suna Timur
- Institute of Natural Sciences, Department of Biochemistry, Ege University , Izmir, Turkey
| | | | | | - Theo Luider
- Department of Neurology, Erasmus MC , Rotterdam, The Netherlands
| | | | - Marei Sammar
- Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College , Karmiel, Israel
| |
Collapse
|
10
|
Mamat R, Nasrulddin NAA, Yusoff NAM. Continued Use of Illicit Substance among Methadone Treatment Patients in Primary Health Care Clinics in East Coast Region of Malaysia. ALCOHOLISM TREATMENT QUARTERLY 2019. [DOI: 10.1080/07347324.2019.1672600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ruzmayuddin Mamat
- Kuantan Health District Office, Ministry of Health Malaysia, Pejabat Kesihatan Daerah, Kuantan
| | | | | |
Collapse
|
11
|
Sun J, Ruan Y, Wang M, Chen R, Yu N, Sun L, Liu T, Chen H. Differentially expressed circulating LncRNAs and mRNA identified by microarray analysis in obese patients. Sci Rep 2016; 6:35421. [PMID: 27767123 PMCID: PMC5073332 DOI: 10.1038/srep35421] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022] Open
Abstract
Circulating long non-coding RNAs (lncRNAs) serve as valuable biomarkers in a number of human diseases. However, lncRNA biomarkers have yet to be identified in obesity. We aim to characterize circulating lncRNA expression in obese and non-obese human subjects. First, we assessed the genome-wide circulating lncRNA expression profiles in blood from 3 obese and 3 non-obese human subjects. We found a significant decrease in circulating levels of three lncRNAs (lncRNA-p5549, lncRNA-p21015 and lncRNA-p19461) in obese human subjects only. Next, using RT-PCR we measured the expression levels of these three lncRNAs in 33 obese and 33 non-obese human subjects and found similar differences. Moreover, we found a negative correlation between circulating levels of these three lncRNAs and body mass index (BMI), waist circumference, waist to hip ratio and fasting insulin. There was also a significant negative correlation between expression of lncRNA-p19461 and homeostasis model assessment-estimated insulin resistance. Finally, we tested the circulating levels of these three lncRNAs in 8 obese human subjects after a 12-week diet-induced weight loss program. We found that only lncRNA-p19461 expression level significantly increased. In summary, circulating lncRNAs are deregulated in obesity. Weight loss–induced changes in this profile support this observation and suggest a potential mechanistic relevance.
Collapse
Affiliation(s)
- Jia Sun
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuting Ruan
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ming Wang
- Nephrology center of integrated traditional Chinese and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rongping Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Na Yu
- The Second Clinical College of Southern Medical University, Guangzhou, China
| | - Lei Sun
- The Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Tiemin Liu
- The Third Affiliated Hospital, Harbin Medical University, Harbin, China.,Division of Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Hong Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Bonnot O, Klünemann HH, Sedel F, Tordjman S, Cohen D, Walterfang M. Diagnostic and treatment implications of psychosis secondary to treatable metabolic disorders in adults: a systematic review. Orphanet J Rare Dis 2014; 9:65. [PMID: 24775716 PMCID: PMC4043981 DOI: 10.1186/1750-1172-9-65] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/24/2014] [Indexed: 12/18/2022] Open
Abstract
Objective It is important for psychiatrists to be aware of certain inborn errors of metabolism (IEMs) as these rare disorders can present as psychosis, and because definitive treatments may be available for treating the underlying metabolic cause. A systematic review was conducted to examine IEMs that often present with schizophrenia-like symptoms. Data sources Published literature on MEDLINE was assessed regarding diseases of homocysteine metabolism (DHM; cystathionine beta-synthase deficiency [CbS-D] and homocysteinemia due to methyltetrahydrofolate reductase deficiency [MTHFR-D]), urea cycle disorders (UCD), acute porphyria (POR), Wilson disease (WD), cerebrotendinous-xanthomatosis (CTX) and Niemann-Pick disease type C (NP-C). Study selection Case reports, case series or reviews with original data regarding psychiatric manifestations and cognitive impairment published between January 1967 and June 2012 were included based on a standardized four-step selection process. Data extraction All selected articles were evaluated for descriptions of psychiatric signs (type, severity, natural history and treatment) in addition to key disease features. Results A total of 611 records were identified. Information from CbS-D (n = 2), MTHFR-D (n = 3), UCD (n = 8), POR (n = 12), WD (n = 11), CTX (n = 14) and NP-C publications (n = 9) were evaluated. Six non-systematic literature review publications were also included. In general, published reports did not provide explicit descriptions of psychiatric symptoms. The literature search findings are presented with a didactic perspective, showing key features for each disease and psychiatric signs that should trigger psychiatrists to suspect that psychotic symptoms may be secondary to an IEM. Conclusion IEMs with a psychiatric presentation and a lack of, or sub-clinical, neurological signs are rare, but should be considered in patients with atypical psychiatric symptoms.
Collapse
Affiliation(s)
- Olivier Bonnot
- Department of Child and Adolescent Psychiatry, Centre Hospitalier Universitaire de Nantes, Hôpital Mère-Enfant, 7 quai Moncousu, 44 000 Nantes, France.
| | | | | | | | | | | |
Collapse
|
13
|
Fadini GP, Avogaro A. Dipeptidyl peptidase-4 inhibition and vascular repair by mobilization of endogenous stem cells in diabetes and beyond. Atherosclerosis 2013; 229:23-9. [DOI: 10.1016/j.atherosclerosis.2013.04.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/28/2013] [Accepted: 04/08/2013] [Indexed: 12/13/2022]
|
14
|
Forsén S, Lindman B. Ion binding in biological systems as studied by NMR spectroscopy. METHODS OF BIOCHEMICAL ANALYSIS 2006; 27:289-486. [PMID: 7022113 DOI: 10.1002/9780470110478.ch5] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Armitage IM, Schoot Uiterkamp AJ, Chlebowski JF, Coleman JE. 113Cd NMR as a probe of the active sites of metalloenzymes. ACTA ACUST UNITED AC 1978. [DOI: 10.1016/0022-2364(78)90160-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Stephens RS, Bryant RG. Application of halide ion nuclear magnetic resonance to bioinorganic problems. Mol Cell Biochem 1976; 13:101-12. [PMID: 12463 DOI: 10.1007/bf01837060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The basis for the application of halide ion nuclear magnetic resonance to the investigation of biochemical problems is reviewed and a summary of applications is presented. Anion binding to macromolecules, low molecular weight or model compounds, metalloenzymes, and extrinsic metal interactions with macromolecules are discussed.
Collapse
|