Bechmann H, Krüger M, Böker E, Bandlow W, Schweyen RJ, Kaudewitz F. On the formation of rho- petites in yeast. II. Effects of mutation tsm-8 on mitochondrial functions and rho-factor stability in Saccharomyces cerevisiae.
MOLECULAR & GENERAL GENETICS : MGG 1977;
155:41-51. [PMID:
337116 DOI:
10.1007/bf00268559]
[Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1. In non-fermentable substrates growth of mutant tsm-8 cells of Saccharomyces cerevisiae is restricted to about one generation after shift from 23 to 35 degrees C. Non-permissive conditions (35 degrees C, glycerol) cause a gradual decrease in respiration to about 20% of the activity at permissive temperature 23 degrees C). 2. Anaerobically grown and glucose-repressed mutant cells exhibit a decreased adaptation rate of mitochondrial functions to aerobic growth and non-fermentative growth, even at 23 degrees C, as revealed by determination of respiratory rates and mitochondrial protein synthesis. 3. At 35 degrees C, rho+ cells of mutant tsm-8 are converted to p- cells within 6-8 generations of growth, in all fermentable substrates tested. Drugs or antibiotics as nalidixic acid, acriflavin, chloramphenicol and erythromycin, bongkrecic acid, antimycin and FCCP, as well as anaerobiosis, have little or no influence on this kinetics. A heat shock does not yield rho- petites to a significant extent. 4. Reversion of tsm-8 cells to wild type function, which occurs spontaneously with a frequency of 10(-8), is found to be due to a mitochondrial mutational event.
Collapse