Dmitriev LF. Bacterial luminescence: luminescence mechanism with cyclic peroxide participation and dependence on reactive oxygen species (a hypothesis).
Biochimie 2000;
82:237-44. [PMID:
10863007 DOI:
10.1016/s0300-9084(00)00211-x]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chemically initiated exchange (CIEE) luminescence reactions were reviewed and a new mechanism of luminescence with peracid as an intermediate is proposed; bacterial luminescence is generally considered to be a case of dioxetane luminescence, or, to be more precise, CIEE-luminescence which includes the generation of a cyclic peroxide. In the hypothesis the monooxygenase reaction (aldehyde -->fatty acid) should not be coupled with emitter generation as is usually believed, but only with the generation of peracid. As to the generation of the emitter, excited flavin, it is likely to occur later, during the interaction of flavin with cyclic peroxide. Its consequence is the breaking of two chemical bonds (O-O and C-C) in the cyclic peroxide and simultaneous generation of 4alpha-hydroxyflavin in exited state. In general, the generation of light includes three stages: 1) the monooxygenase reaction and the concurrent production of peracid; 2) the conversion of peracid to cyclic peroxide; and 3) the interaction of cyclic peroxide with flavin (through the CIEE mechanism).
Collapse