1
|
Hauk P, Weeks R, Ostermeier M. A CRISPR-dCas9 System for Assaying and Selecting for RNase III Activity In Vivo in Escherichia coli. CRISPR J 2023; 6:43-51. [PMID: 36493370 DOI: 10.1089/crispr.2022.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ribonuclease III (RNase III) and RNase III-like ribonucleases have a wide range of important functions and are found in all organisms, yet a simple and high-throughput in vivo method for measuring RNase III activity does not exist. Typical methods for measuring RNase III activity rely on in vitro RNA analysis or in vivo methods that are not suitable for high-throughput analysis. In this study, we describe our development of a deactivated Cas9 (dCas9)-based in vivo assay for RNase III activity that utilizes RNase III's cleavage of the 5'-untranslated region (UTR) of its own messenger RNA. The key molecule in the system is a hybrid guide RNA (gRNA) between the 5'-UTR of RNase III and gGFP, a gRNA that works with dCas9 to repress GFP expression. This fusion must be cleaved by RNase III for full GFP repression. Our system uses GFP fluorescence to report on Escherichia coli RNase III activity in culture and on an individual cell basis, making it effective for selecting individual cells through fluorescence-activated cell sorting. Homology between enzymes within the RNase III family suggests this assay might be adapted to measure the activity of other enzymes in the RNase III family such as human Dicer or Drosha.
Collapse
Affiliation(s)
- Pricila Hauk
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ryan Weeks
- Chemistry-Biology Interface Graduate Program, Johns Hopkins University, Baltimore, Maryland, USA
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Jones GH. Streptomyces RNases - Function and impact on antibiotic synthesis. Front Microbiol 2023; 14:1096228. [PMID: 37113221 PMCID: PMC10126417 DOI: 10.3389/fmicb.2023.1096228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Streptomyces are soil dwelling bacteria that are notable for their ability to sporulate and to produce antibiotics and other secondary metabolites. Antibiotic biosynthesis is controlled by a variety of complex regulatory networks, involving activators, repressors, signaling molecules and other regulatory elements. One group of enzymes that affects antibiotic synthesis in Streptomyces is the ribonucleases. In this review, the function of five ribonucleases, RNase E, RNase J, polynucleotide phosphorylase, RNase III and oligoribonuclease, and their impact on antibiotic production will be discussed. Mechanisms for the effects of RNase action on antibiotic synthesis are proposed.
Collapse
|
3
|
Cánovas-Márquez JT, Falk S, Nicolás FE, Padmanabhan S, Zapata-Pérez R, Sánchez-Ferrer Á, Navarro E, Garre V. A ribonuclease III involved in virulence of Mucorales fungi has evolved to cut exclusively single-stranded RNA. Nucleic Acids Res 2021; 49:5294-5307. [PMID: 33877360 PMCID: PMC8136814 DOI: 10.1093/nar/gkab238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/16/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Members of the ribonuclease III (RNase III) family regulate gene expression by processing double-stranded RNA (dsRNA). This family includes eukaryotic Dicer and Drosha enzymes that generate small dsRNAs in the RNA interference (RNAi) pathway. The fungus Mucor lusitanicus, which causes the deadly infection mucormycosis, has a complex RNAi system encompassing a non-canonical RNAi pathway (NCRIP) that regulates virulence by degrading specific mRNAs. In this pathway, Dicer function is replaced by R3B2, an atypical class I RNase III, and small single-stranded RNAs (ssRNAs) are produced instead of small dsRNA as Dicer-dependent RNAi pathways. Here, we show that R3B2 forms a homodimer that binds to ssRNA and dsRNA molecules, but exclusively cuts ssRNA, in contrast to all known RNase III. The dsRNA cleavage inability stems from its unusual RNase III domain (RIIID) because its replacement by a canonical RIIID allows dsRNA processing. A crystal structure of R3B2 RIIID resembles canonical RIIIDs, despite the low sequence conservation. However, the groove that accommodates dsRNA in canonical RNases III is narrower in the R3B2 homodimer, suggesting that this feature could be responsible for the cleavage specificity for ssRNA. Conservation of this activity in R3B2 proteins from other mucormycosis-causing Mucorales fungi indicates an early evolutionary acquisition.
Collapse
Affiliation(s)
- José Tomás Cánovas-Márquez
- Department of Genetics and Microbiology (Associated Unit to IQFR-CSIC), Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Sebastian Falk
- Department of Structural and Computational Biology, Max Perutz Labs, A-1030 Vienna, Austria
| | - Francisco E Nicolás
- Department of Genetics and Microbiology (Associated Unit to IQFR-CSIC), Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Subramanian Padmanabhan
- Instituto de Química Física “Rocasolano,” Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Rubén Zapata-Pérez
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum,” University of Murcia, Campus Espinardo, 30100, Murcia, Spain
| | - Álvaro Sánchez-Ferrer
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum,” University of Murcia, Campus Espinardo, 30100, Murcia, Spain
| | - Eusebio Navarro
- Department of Genetics and Microbiology (Associated Unit to IQFR-CSIC), Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Victoriano Garre
- Department of Genetics and Microbiology (Associated Unit to IQFR-CSIC), Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
4
|
Altuvia Y, Bar A, Reiss N, Karavani E, Argaman L, Margalit H. In vivo cleavage rules and target repertoire of RNase III in Escherichia coli. Nucleic Acids Res 2019; 46:10380-10394. [PMID: 30113670 PMCID: PMC6212723 DOI: 10.1093/nar/gky684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/18/2018] [Indexed: 12/02/2022] Open
Abstract
Bacterial RNase III plays important roles in the processing and degradation of RNA transcripts. A major goal is to identify the cleavage targets of this endoribonuclease at a transcriptome-wide scale and delineate its in vivo cleavage rules. Here we applied to Escherichia coli grown to either exponential or stationary phase a tailored RNA-seq-based technology, which allows transcriptome-wide mapping of RNase III cleavage sites at a nucleotide resolution. Our analysis of the large-scale in vivo cleavage data substantiated the established cleavage pattern of a double cleavage in an intra-molecular stem structure, leaving 2-nt-long 3′ overhangs, and refined the base-pairing preferences in the cleavage site vicinity. Intriguingly, we observed that the two stem positions between the cleavage sites are highly base-paired, usually involving at least one G-C or C-G base pair. We present a clear distinction between intra-molecular stem structures that are RNase III substrates and intra-molecular stem structures randomly selected across the transcriptome, emphasizing the in vivo specificity of RNase III. Our study provides a comprehensive map of the cleavage sites in both intra-molecular and inter-molecular duplex substrates, providing novel insights into the involvement of RNase III in post-transcriptional regulation in the bacterial cell.
Collapse
Affiliation(s)
- Yael Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Amir Bar
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Niv Reiss
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ehud Karavani
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Liron Argaman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
5
|
Court DL, Gan J, Liang YH, Shaw GX, Tropea JE, Costantino N, Waugh DS, Ji X. RNase III: Genetics and function; structure and mechanism. Annu Rev Genet 2014; 47:405-31. [PMID: 24274754 DOI: 10.1146/annurev-genet-110711-155618] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNase III is a global regulator of gene expression in Escherichia coli that is instrumental in the maturation of ribosomal and other structural RNAs. We examine here how RNase III itself is regulated in response to growth and other environmental changes encountered by the cell and how, by binding or processing double-stranded RNA (dsRNA) intermediates, RNase III controls the expression of genes. Recent insight into the mechanism of dsRNA binding and processing, gained from structural studies of RNase III, is reviewed. Structural studies also reveal new cleavage sites in the enzyme that can generate longer 3' overhangs.
Collapse
Affiliation(s)
- Donald L Court
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702; , , , , , , ,
| | | | | | | | | | | | | | | |
Collapse
|
6
|
The gene encoding RNase III in Streptomyces coelicolor is transcribed during exponential phase and is required for antibiotic production and for proper sporulation. J Bacteriol 2008; 190:4079-83. [PMID: 18359817 DOI: 10.1128/jb.01889-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phenotypic analysis of a constructed RNase III null mutant of Streptomyces coelicolor revealed that RNase III is required for both antibiotic production and proper formation of sporulation septa. Transcriptional analysis of the gene encoding RNase III indicated that it is transcribed exclusively during exponential phase as part of a tricistronic message.
Collapse
|
7
|
Abstract
This chapter discusses several topics relating to the mechanisms of mRNA decay. These topics include the following: important physical properties of mRNA molecules that can alter their stability; methods for determining mRNA half-lives; the genetics and biochemistry of proteins and enzymes involved in mRNA decay; posttranscriptional modification of mRNAs; the cellular location of the mRNA decay apparatus; regulation of mRNA decay; the relationships among mRNA decay, tRNA maturation, and ribosomal RNA processing; and biochemical models for mRNA decay. Escherichia coli has multiple pathways for ensuring the effective decay of mRNAs and mRNA decay is closely linked to the cell's overall RNA metabolism. Finally, the chapter highlights important unanswered questions regarding both the mechanism and importance of mRNA decay.
Collapse
|
8
|
Ow MC, Perwez T, Kushner SR. RNase G of Escherichia coli exhibits only limited functional overlap with its essential homologue, RNase E. Mol Microbiol 2003; 49:607-22. [PMID: 12864847 DOI: 10.1046/j.1365-2958.2003.03587.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
RNase G (rng) is an E. coli endoribonuclease that is homologous to the catalytic domain of RNase E (rne), an essential protein that is a major participant in tRNA maturation, mRNA decay, rRNA processing and M1 RNA processing. We demonstrate here that whereas RNase G inefficiently participates in the degradation of mRNAs and the processing of 9S rRNA, it is not involved in either tRNA or M1 RNA processing. This conclusion is supported by the fact that inactivation of RNase G alone does not affect 9S rRNA processing and only leads to minor changes in mRNA half-lives. However, in rng rne double mutants mRNA decay and 9S rRNA processing are more defective than in either single mutant. Conversely, increasing RNase G levels in an rne-1 rng::cat double mutant, proportionally increased the extent of 9S rRNA processing and decreased the half-lives of specific mRNAs. In contrast, variations in the amount of RNase G did not alter tRNA processing under any circumstances. Thus, the failure of RNase G to complement rne mutations, even when overproduced at high levels, apparently results from its inability to substitute for RNase E in the maturation of tRNAs.
Collapse
Affiliation(s)
- Maria C Ow
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
9
|
Abstract
The dsRNA binding proteins (DRBPs) comprise a growing family of eukaryotic, prokaryotic, and viral-encoded products that share a common evolutionarily conserved motif specifically facilitating interaction with dsRNA. Proteins harboring dsRNA binding domains (DRBDs) have been reported to interact with as little as 11 bp of dsRNA, an event that is independent of nucleotide sequence arrangement. More than 20 DRBPs have been identified and reportedly function in a diverse range of critically important roles in the cell. Examples include the dsRNA-dependent protein kinase PKR that functions in dsRNA signaling and host defense against virus infection and DICER, which is implicated in RNA interference (RNAi) -mediated gene silencing. Other DRBPs such as Staufen, adenosine deaminase acting on RNA (ADAR), and spermatid perinuclear RNA binding protein (SPNR) are known to play essential roles in development, translation, RNA editing, and stability. In many cases, homozygous and even heterozygous disruption of DRBPs in animal models results in embryonic lethality. These results implicate the recognition of dsRNA as an evolutionarily conserved mechanism important in the regulation of gene expression and in host defense and underscore the diversity of essential biological tasks performed by dsRNA-related processes in the cell.
Collapse
Affiliation(s)
- Laura R Saunders
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, Florida, USA
| | | |
Collapse
|
10
|
Wilson HR, Yu D, Peters HK, Zhou JG, Court DL. The global regulator RNase III modulates translation repression by the transcription elongation factor N. EMBO J 2002; 21:4154-61. [PMID: 12145215 PMCID: PMC126142 DOI: 10.1093/emboj/cdf395] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2001] [Revised: 05/01/2002] [Accepted: 06/05/2002] [Indexed: 11/14/2022] Open
Abstract
Efficient expression of most bacteriophage lambda early genes depends upon the formation of an antiterminating transcription complex to overcome transcription terminators in the early operons, p(L) and p(R). Formation of this complex requires the phage-encoded protein N, the first gene product expressed from the p(L) operon. The N leader RNA contains, in this order: the NUTL site, an RNase III-sensitive hairpin and the N ribosome-binding site. N bound to NUTL RNA is part of both the antitermination complex and an autoregulatory complex that represses the translation of the N gene. In this study, we show that cleavage of the N leader by RNase III does not inhibit antitermination but prevents N-mediated translation repression of N gene expression. In fact, by preventing N autoregulation, RNase III activates N gene translation at least 200-fold. N-mediated translation repression is extremely sensitive to growth rate, reflecting the growth rate regulation of RNase III expression itself. Given N protein's critical role in lambda development, the level of RNase III activity therefore serves as an important sensor of physiological conditions for the bacteriophage.
Collapse
Affiliation(s)
- Helen R. Wilson
- Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA Present address: Lexicon Genetics, Inc., 4000 Research Forest Drive, The Woodlands, TX 77381, USA Present address: Institute of Biotechnology, No. 27, Tai-ping Road, Beijing 100856, China Corresponding author e-mail:
| | - Daiguan Yu
- Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA Present address: Lexicon Genetics, Inc., 4000 Research Forest Drive, The Woodlands, TX 77381, USA Present address: Institute of Biotechnology, No. 27, Tai-ping Road, Beijing 100856, China Corresponding author e-mail:
| | - Howard K. Peters
- Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA Present address: Lexicon Genetics, Inc., 4000 Research Forest Drive, The Woodlands, TX 77381, USA Present address: Institute of Biotechnology, No. 27, Tai-ping Road, Beijing 100856, China Corresponding author e-mail:
| | - Jian-guang Zhou
- Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA Present address: Lexicon Genetics, Inc., 4000 Research Forest Drive, The Woodlands, TX 77381, USA Present address: Institute of Biotechnology, No. 27, Tai-ping Road, Beijing 100856, China Corresponding author e-mail:
| | - Donald L. Court
- Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA Present address: Lexicon Genetics, Inc., 4000 Research Forest Drive, The Woodlands, TX 77381, USA Present address: Institute of Biotechnology, No. 27, Tai-ping Road, Beijing 100856, China Corresponding author e-mail:
| |
Collapse
|
11
|
Blaszczyk J, Tropea JE, Bubunenko M, Routzahn KM, Waugh DS, Court DL, Ji X. Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage. Structure 2001; 9:1225-36. [PMID: 11738048 DOI: 10.1016/s0969-2126(01)00685-2] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Aquifex aeolicus Ribonuclease III (Aa-RNase III) belongs to the family of Mg(2+)-dependent endonucleases that show specificity for double-stranded RNA (dsRNA). RNase III is conserved in all known bacteria and eukaryotes and has 1-2 copies of a 9-residue consensus sequence, known as the RNase III signature motif. The bacterial RNase III proteins are the simplest, consisting of two domains: an N-terminal endonuclease domain, followed by a double-stranded RNA binding domain (dsRBD). The three-dimensional structure of the dsRBD in Escherichia coli RNase III has been elucidated; no structural information is available for the endonuclease domain of any RNase III. RESULTS We present the crystal structures of the Aa-RNase III endonuclease domain in its ligand-free form and in complex with Mn(2+). The structures reveal a novel protein fold and suggest a mechanism for dsRNA cleavage. On the basis of structural, genetic, and biological data, we have constructed a hypothetical model of Aa-RNase III in complex with dsRNA and Mg(2+) ion, which provides the first glimpse of RNase III in action. CONCLUSIONS The functional Aa-RNase III dimer is formed via mainly hydrophobic interactions, including a "ball-and-socket" junction that ensures accurate alignment of the two monomers. The fold of the polypeptide chain and its dimerization create a valley with two compound active centers at each end of the valley. The valley can accommodate a dsRNA substrate. Mn(2+) binding has significant impact on crystal packing, intermolecular interactions, thermal stability, and the formation of two RNA-cutting sites within each compound active center.
Collapse
Affiliation(s)
- J Blaszczyk
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Timmons L, Court DL, Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 2001; 263:103-12. [PMID: 11223248 DOI: 10.1016/s0378-1119(00)00579-5] [Citation(s) in RCA: 1349] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Genetic interference mediated by double-stranded RNA (RNAi) has been a valuable tool in the analysis of gene function in Caenorhabditis elegans. Here we report an efficient induction of RNAi using bacteria to deliver double-stranded RNA. This method makes use of bacteria that are deficient in RNaseIII, an enzyme that normally degrades a majority of dsRNAs in the bacterial cell. Bacteria deficient for RNaseIII were engineered to produce high quantities of specific dsRNA segments. When fed to C. elegans, such engineered bacteria were found to produce populations of RNAi-affected animals with phenotypes that were comparable in expressivity to the corresponding loss-of-function mutants. We found the method to be most effective in inducing RNAi for non-neuronal tissue of late larval and adult hermaphrodites, with decreased effectiveness in the nervous system, in early larval stages, and in males. Bacteria-induced RNAi phenotypes could be maintained over the course of several generations with continuous feeding, allowing for convenient assessments of the biological consequences of specific genetic interference and of continuous exposure to dsRNAs.
Collapse
Affiliation(s)
- L Timmons
- Department of Embryology, Carnegie Institution of Washington, 115 West University Parkway, Baltimore, MD 21210, USA
| | | | | |
Collapse
|
13
|
Lamontagne B, Tremblay A, Abou Elela S. The N-terminal domain that distinguishes yeast from bacterial RNase III contains a dimerization signal required for efficient double-stranded RNA cleavage. Mol Cell Biol 2000; 20:1104-15. [PMID: 10648595 PMCID: PMC85228 DOI: 10.1128/mcb.20.4.1104-1115.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/1999] [Accepted: 11/17/1999] [Indexed: 11/20/2022] Open
Abstract
Yeast Rnt1 is a member of the double-stranded RNA (dsRNA)-specific RNase III family identified by conserved dsRNA binding (dsRBD) and nuclease domains. Comparative sequence analyses have revealed an additional N-terminal domain unique to the eukaryotic homologues of RNase III. The deletion of this domain from Rnt1 slowed growth and led to mild accumulation of unprocessed 25S pre-rRNA. In vitro, deletion of the N-terminal domain reduced the rate of RNA cleavage under physiological salt concentration. Size exclusion chromatography and cross-linking assays indicated that the N-terminal domain and the dsRBD self-interact to stabilize the Rnt1 homodimer. In addition, an interaction between the N-terminal domain and the dsRBD was identified by a two-hybrid assay. The results suggest that the eukaryotic N-terminal domain of Rnt1 ensures efficient dsRNA cleavage by mediating the assembly of optimum Rnt1-RNA ribonucleoprotein complex.
Collapse
Affiliation(s)
- B Lamontagne
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | |
Collapse
|
14
|
Price B, Adamidis T, Kong R, Champness W. A Streptomyces coelicolor antibiotic regulatory gene, absB, encodes an RNase III homolog. J Bacteriol 1999; 181:6142-51. [PMID: 10498729 PMCID: PMC103644 DOI: 10.1128/jb.181.19.6142-6151.1999] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/1999] [Accepted: 07/19/1999] [Indexed: 11/20/2022] Open
Abstract
Streptomyces coelicolor produces four genetically and structurally distinct antibiotics in a growth-phase-dependent manner. S. coelicolor mutants globally deficient in antibiotic production (Abs(-) phenotype) have previously been isolated, and some of these were found to define the absB locus. In this study, we isolated absB-complementing DNA and show that it encodes the S. coelicolor homolog of RNase III (rnc). Several lines of evidence indicate that the absB mutant global defect in antibiotic synthesis is due to a deficiency in RNase III. In marker exchange experiments, the S. coelicolor rnc gene rescued absB mutants, restoring antibiotic production. Sequencing the DNA of absB mutants confirmed that the absB mutations lay in the rnc open reading frame. Constructed disruptions of rnc in both S. coelicolor 1501 and Streptomyces lividans 1326 caused an Abs(-) phenotype. An absB mutation caused accumulation of 30S rRNA precursors, as had previously been reported for E. coli rnc mutants. The absB gene is widely conserved in streptomycetes. We speculate on why an RNase III deficiency could globally affect the synthesis of antibiotics.
Collapse
Affiliation(s)
- B Price
- Department of Microbiology, Michigan State University, East Lansing, Michigan 48824-1101, USA
| | | | | | | |
Collapse
|
15
|
Dasgupta S, Fernandez L, Kameyama L, Inada T, Nakamura Y, Pappas A, Court DL. Genetic uncoupling of the dsRNA-binding and RNA cleavage activities of the Escherichia coli endoribonuclease RNase III--the effect of dsRNA binding on gene expression. Mol Microbiol 1998; 28:629-40. [PMID: 9632264 DOI: 10.1046/j.1365-2958.1998.00828.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
RNase III, a double-stranded RNA-specific endonuclease, is proposed to be one of Escherichia coli's global regulators because of its ability to affect the expression of a large number of unrelated genes by influencing post-transcriptional control of mRNA stability or mRNA translational efficiency. Here, we describe the phenotypes of bacteria carrying point mutations in rnc, the gene encoding RNase III. The substrate recognition and RNA-processing properties of mutant proteins were analysed in vivo by measuring expression from known RNase III-modulated genes and in vitro from the proteins' binding and cleavage activities on known double-stranded RNA substrates. Our results show that although the point mutation rnc70 exhibited all the usual rnc null-like phenotypes, unlike other mutations, it was dominant over the wild-type allele. Multicopy expression of rnc70 could suppress a lethal phenotype of the wild-type rnc allele in a certain genetic background; it could also inhibit the RNase III-mediated activation of lambdaN gene translation by competing for the RNA-binding site of the wild-type endonuclease. The mutant protein failed to cleave the standard RNase III substrates in vitro but exhibited an affinity for double-stranded RNA when passed through poly(rI):poly(rC) columns. Filter binding and gel-shift assays with purified Rnc70 showed that the mutant protein binds to known RNase III mRNA substrates in a site-specific manner. In vitro processing reactions with purified enzyme and labelled RNA showed that the in vivo dominant effect of the mutant enzyme over the wild-type was not necessarily caused by formation of mixed dimers. Thus, the rnc70 mutation generates a mutant RNase III with impaired endonucleolytic activity but without blocking its ability to recognize and bind double-stranded RNA substrates.
Collapse
Affiliation(s)
- S Dasgupta
- Gene Regulation and Chromosome Biology Laboratory, ABL-Basic Research Program, NCI-FCRDC, Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Condon C, Putzer H, Luo D, Grunberg-Manago M. Processing of the Bacillus subtilis thrS leader mRNA is RNase E-dependent in Escherichia coli. J Mol Biol 1997; 268:235-42. [PMID: 9159466 DOI: 10.1006/jmbi.1997.0971] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have recently reported that processing occurs in the untranslated leader region of several members of a family of Gram-positive genes regulated by tRNA-mediated antitermination. We showed that cleavage at this site plays an important role in the induction of Bacillus subtilis thrS gene expression, following threonine starvation, by stabilising the downstream mRNA. Here we show that, when transferred on a plasmid, processing of the B. subtilis thrS leader can occur at the same site in Escherichia coli. Cleavage at this site is dependent on the E. coli endoribonuclease E, both in vivo and in vitro, suggesting that a functional homologue of RNase E is responsible for thrS processing in B. subtilis.
Collapse
Affiliation(s)
- C Condon
- UPR 9073, Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | |
Collapse
|
17
|
Taraseviciene L, Björk GR, Uhlin BE. Evidence for an RNA binding region in the Escherichia coli processing endoribonuclease RNase E. J Biol Chem 1995; 270:26391-8. [PMID: 7592853 DOI: 10.1074/jbc.270.44.26391] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The processing endoribonuclease RNase E (Rne), which is encoded by the rne gene, is involved in the maturation process of messenger RNAs and a ribosomal RNA. A number of deletions were constructed in order to assess functional domains of the rne gene product. The expression of the deletion constructs using a T7 promoter/RNA polymerase overproduction system led to the synthesis of truncated Rne polypeptides. The smallest gene fragment in this collection that was able to complement a temperature sensitive rnets mutation and to restore the processing of 9 S RNA was a 2.3-kilobase pair fragment with a 1.9-kilobase pair N-terminal coding sequence that mediated synthesis of a 70.8-kDa polypeptide. Antibodies raised against a truncated 110-kDa polypeptide cross-reacted with the intact rne gene product and with all of the shorter C-terminal truncated polypeptides, indicating that the N-terminal part of the molecule contained strong antigenic determinants. Furthermore, by analyzing the Rne protein and the truncated polypeptides for their ability to bind substrate RNAs, we were able to demonstrate that the central part of the Rne molecule encodes an RNA binding region. Binding to substrate RNAs correlated with the endonucleolytic activity. RNAs that are not substrates for RNase E did not bind to the protein. The two mutated Rne polypeptides expressed from the cloned gene containing either the rne-3071 or ams1 mutation also had the ability to bind 9 S RNA, while their enzymatic function was completely abolished. The data presented here suggest that the endonucleolytic activity is encoded by the N-terminal part of the Rne protein molecule and that the central part of it possesses RNA binding activity.
Collapse
|
18
|
Inada T, Nakamura Y. Lethal double-stranded RNA processing activity of ribonuclease III in the absence of suhB protein of Escherichia coli. Biochimie 1995; 77:294-302. [PMID: 8589060 DOI: 10.1016/0300-9084(96)88139-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The suhB gene of Escherichia coli has been defined by its mutant allele that suppresses other mutants in secY, rpoH, dnaB, and era. The suhB mutant by itself is cold sensitive, and is shown to have defects in protein synthesis. Starting with the suhB cold-sensitive mutant, cold-resistant suppressors were isolated. These suppressors mapped to the gene rnc encoding RNase III (a double-strand RNA-processing enzyme), and restored normal protein synthesis to the suhB mutants. Two known rnc mutations, rnc70 or rnc105, both defective in RNA cleavage activity, similarly restored growth of suhB. These rnc mutations did not alter the level of suhB expression. These results suggest that wild-type RNase III exerts a lethal effect on E coli upon depletion of SuhB at low temperatures. One explanation is to assume that the double-strand RNA-processing activity of RNase III itself is potentially lethal to E coli and the normal function of SuhB modulates the lethal action of RNase III.
Collapse
Affiliation(s)
- T Inada
- Department of Tumor Biology, University of Tokyo, Japan
| | | |
Collapse
|
19
|
Abstract
RNA processing in Escherichia coli and some of its phages is reviewed here, with primary emphasis on rRNA and tRNA processing. Three enzymes, RNase III, RNase E and RNase P are responsible for most of the primary endonucleolytic RNA processing events. The first two are proteins, while RNase P is a ribozyme. These three enzymes have unique functions and in their absence, the cleavage events they catalyze are not performed. On the other hand a relatively large number of exonucleases participate in the trimming of the 3' ends of tRNA precursor molecules and they can substitute for each other. Primary processing is the first event that happens to the nascent RNA molecule, while in secondary RNA processing, the substrate is a product of a primary processing event. Although most RNA processing occurs in RNP particles, it seems that only in secondary RNA processing is the RNP particle required for the reaction. Bacteria and especially bacteriophages contain self-splicing introns which in cases were probably acquired from other species.
Collapse
Affiliation(s)
- D Apirion
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | | |
Collapse
|
20
|
Babitzke P, Granger L, Olszewski J, Kushner SR. Analysis of mRNA decay and rRNA processing in Escherichia coli multiple mutants carrying a deletion in RNase III. J Bacteriol 1993; 175:229-39. [PMID: 8416898 PMCID: PMC196118 DOI: 10.1128/jb.175.1.229-239.1993] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
RNase III is an endonuclease involved in processing both rRNA and certain mRNAs. To help determine whether RNase III (rnc) is required for general mRNA turnover in Escherichia coli, we have created a deletion-insertion mutation (delta rnc-38) in the structural gene. In addition, a series of multiple mutant strains containing deficiencies in RNase II (rnb-500), polynucleotide phosphorylase (pnp-7 or pnp-200), RNase E (rne-1 or rne-3071), and RNase III (delta rnc-38) were constructed. The delta rnc-38 single mutant was viable and led to the accumulation of 30S rRNA precursors, as has been previously observed with the rnc-105 allele (P. Gegenheimer, N. Watson, and D. Apirion, J. Biol. Chem. 252:3064-3073, 1977). In the multiple mutant strains, the presence of the delta rnc-38 allele resulted in the more rapid decay of pulse-labeled RNA but did not suppress conditional lethality, suggesting that the lethality associated with altered mRNA turnover may be due to the stabilization of specific mRNAs. In addition, these results indicate that RNase III is probably not required for general mRNA decay. Of particular interest was the observation that the delta rnc-38 rne-1 double mutant did not accumulate 30S rRNA precursors at 30 degrees C, while the delta rnc-38 rne-3071 double mutant did. Possible explanations of these results are discussed.
Collapse
Affiliation(s)
- P Babitzke
- Department of Genetics, University of Georgia, Athens 30602
| | | | | | | |
Collapse
|
21
|
Chauhan AK, Apirion D. The rne gene is the structural gene for the processing endoribonuclease RNase E of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1991; 228:49-54. [PMID: 1715977 DOI: 10.1007/bf00282446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using T7 RNA polymerase and specific constructs derived from 5S rRNA and RNA I genes, we generated substrates for the RNA processing enzyme RNase E. Using these substrates we have shown that a 3.2 kb DNA fragment that complements the rne-3071 mutation can express RNase E activity. We also found that T7 RNA polymerase terminates within the 5S rRNA gene.
Collapse
Affiliation(s)
- A K Chauhan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | | |
Collapse
|
22
|
Nilsson P, Uhlin BE. Differential decay of a polycistronic Escherichia coli transcript is initiated by RNaseE-dependent endonucleolytic processing. Mol Microbiol 1991; 5:1791-9. [PMID: 1943710 DOI: 10.1111/j.1365-2958.1991.tb01928.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Differential expression of the genes expressing Pap pili in Escherichia coli was suggested to involve mRNAs with different stabilities. As the result of a post-transcriptional processing event, a papA gene-specific mRNA product (mRNA-A) accumulates in large excess relative to the primary mRNA-BA transcript. Our results show that the processed product, mRNA-A, is a translationally active molecule and that it is generated from the mRNA-BA precursor by an RNaseE-dependent mechanism. The processing did not occur under non-permissive conditions in an E. coli rne mutant strain with a temperature-sensitive RNaseE. The endonuclease RNaseE was previously described as being chiefly involved in the processing of the 9S precursor of 5S rRNA. A comparison of nucleotide sequences of mRNA-BA and three other RNAs processed by RNAseE revealed a conserved motif around the cleavage sites. Mutations abolishing the activity of either of two other endoribonucleases, RNaseIII and RNaseP, did not affect the pap mRNA processing event. However, a conditional mutation in the ams locus, causing altered stability of bulk mRNA in E. coli, led to reduced pap mRNA processing in a manner similar to the effect caused by RNaseE deficiency. Our findings are consistent with the idea that ams is related/allelic to rne. Absence of the processing event in the RNaseE mutant (rne-3071) strain led to a four-fold stabilization of the mRNA-BA primary transcript. We conclude that the RNaseE-dependent processing event is the rate-limiting step in the decay of the papB-coding part of the primary transcript and in the production of the stable mRNA-A product.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Nilsson
- Department of Microbiology, University of Umeå, Sweden
| | | |
Collapse
|
23
|
Altuvia S, Kornitzer D, Kobi S, Oppenheim AB. Functional and structural elements of the mRNA of the cIII gene of bacteriophage lambda. J Mol Biol 1991; 218:723-33. [PMID: 1827163 DOI: 10.1016/0022-2836(91)90261-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The bacteriophage lambda cIII gene product is an early regulatory protein that participates in the lysis-lysogeny decision of the phage following infection. We have previously shown that the translation of the cIII gene is determined by two unique factors: (1) efficient expression is dependent upon the presence of RNaseIII in the cell; (2) alternative mRNA structures of the cIII coding region determine the rate of its translation initiation. In this study we demonstrate the presence of the alternative mRNA structures in vivo. The presence of minor RNaseIII cleavage sites within this region indicate that RNaseIII can differentiate between the two alternative structures. We localize by a deletion analysis the RNaseIII responsive element to the cIII coding region, and suggest that regulation of cIII translation by RNaseIII is achieved through binding to the alternative structures region of the mRNA.
Collapse
Affiliation(s)
- S Altuvia
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
24
|
Lerner CG, Inouye M. Pleiotropic changes resulting from depletion of Era, an essential GTP-binding protein in Escherichia coli. Mol Microbiol 1991; 5:951-7. [PMID: 1906969 DOI: 10.1111/j.1365-2958.1991.tb00770.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phenotypic analysis of a temperature-sensitive era mutant strain indicates that Escherichia coli cells depleted of Era undergo many physiological changes. At 43 degrees C, a completely non-permissive temperature, growth is arrested because of loss of the gene and depletion of the Era protein. Depletion of Era at 43 degrees C results in depressed synthesis of heat-shock proteins DnaK, GroEL/ES, D33.4 and C62.5, lack of thermal induction of ppGpp pool levels, and increased capacity for carbon source metabolism through the citric acid cycle. Thus, in addition to inhibition of cell growth and viability, loss of Era function results in pleiotropic changes including abnormal adaptation to thermal stress.
Collapse
Affiliation(s)
- C G Lerner
- Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers University of Medicine and Dentistry of New Jersey, Piscataway 08854-5635
| | | |
Collapse
|
25
|
Izuhara M, Takamune K, Takata R. Cloning and sequencing of an Escherichia coli K12 gene which encodes a polypeptide having similarity to the human ferritin H subunit. MOLECULAR & GENERAL GENETICS : MGG 1991; 225:510-3. [PMID: 2017145 DOI: 10.1007/bf00261694] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using lambda phage clones containing segments of the Escherichia coli K12 chromosome as hybridization probes, we found one gene at 42 min on the E. coli chromosome map, the expression of which was affected by RNase III. The sequence of the DNA fragment containing this gene (gen-165) revealed the presence of an open reading frame encoding a polypeptide of 165 amino acid residues. The amino acid sequence deduced from the nucleotide sequence exhibited a remarkable similarity to that of the human ferritin H chain.
Collapse
Affiliation(s)
- M Izuhara
- Department of Biology, Saga Medical School, Nabeshima, Japan
| | | | | |
Collapse
|
26
|
Chauhan AK, Miczak A, Taraseviciene L, Apirion D. Sequencing and expression of the rne gene of Escherichia coli. Nucleic Acids Res 1991; 19:125-9. [PMID: 2011493 PMCID: PMC333542 DOI: 10.1093/nar/19.1.125] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RNase E is a major endonucleolytic RNA processing enzyme in Escherichia coli. We have sequenced a 3.2 kb EcoRI-BamHI fragment encoding the rne gene, and identified its reading frame. Upstream from the gene, there are appropriate consensus sequences for a putative promoter and a ribosome binding site. We have translated this gene using a T7 RNA polymerase/promoter system. We determined 25 amino acids from the N-terminal of the translated product and they are in full agreement with the DNA sequence. The translated product of the rne gene migrates in SDS containing polyacrylamide gels as a 110,000 Da polypeptide, but the open reading frame found in the sequenced DNA indicates a much smaller protein. The entity that migrates as a 110,000 Da contains RNA, which could account, at least partially, for the migration of the rne gene product in SDS containing polyacrylamide gels.
Collapse
Affiliation(s)
- A K Chauhan
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110
| | | | | | | |
Collapse
|
27
|
Brun YV, Sanfaçon H, Breton R, Lapointe J. Closely spaced and divergent promoters for an aminoacyl-tRNA synthetase gene and a tRNA operon in Escherichia coli. Transcriptional and post-transcriptional regulation of gltX, valU and alaW. J Mol Biol 1990; 214:845-64. [PMID: 2201777 DOI: 10.1016/0022-2836(90)90340-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The transcription of the gltX gene encoding the glutamyl-tRNA synthetase and of the adjacent valU and alaW tRNA operons of Escherichia coli K-12 has been studied. The alaW operon containing two tRNA(GGCAla) genes, is 800 base-pairs downstream from the gltX terminator and is transcribed from the same strand. The valU operon, containing three tRNA(UACVal) and one tRNA(UUULys) (the wild-type allele of supN) genes, is adjacent to gltX and is transcribed from the opposite strand. Its only promoter is upstream from the gltX promoters. The gltX gene transcript is monocistronic and its transcription initiates at three promoters, P1, P2 and P3. The transcripts from one or more of these promoters are processed by RNase E to generate two major species of gltX mRNA, which are stable and whose relative abundance varies with growth conditions. The stability of gltX mRNA decreases in an RNase E- strain and its level increases with growth rate about three times more than that of the glutamyl-tRNA synthetase. The 5' region of these mRNAs can adopt a stable secondary structure (close to the ribosome binding site) that is similar to the anticodon and part of the dihydroU stems and loops of tRNA(Glu), and which might be involved in translational regulation of GluRS synthesis. The gltX and valU promoters share the same AT-rich and bent upstream region, whose position coincides with the position of the upstream activating sequences of tRNA and rRNA promoters to which they are similar. This suggests that gltX and valU share transcriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Y V Brun
- Département de Biochimie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
28
|
Abstract
RNase III, an Escherichia coli double-stranded endoribonuclease, is known to be involved in maturation of rRNA and regulation of several bacteriophage and Escherichia coli genes. Clones of the region of the E. coli chromosome containing the gene for RNase III (rnc) were obtained by screening genomic libraries in lambda with DNA known to map near rnc. A phage clone with the rnc region was randomly mutagenized with a delta Tn10 element, and the insertions were recombined onto the chromosome, generating a series of strains with delta Tn10 insertions in the rnc region. Two insertions that had Rnc- phenotypes were located. One of them lay in the rnc gene, and one was in the rnc leader sequence. Polarity studies showed that rnc is in an operon with two other genes, era and recO. The sequence of the recO gene beyond era indicated it could encode a protein of approximately 26 kilodaltons and, like rnc and era, had codon usage consistent with a low level of expression. Experiments using antibiotic cassettes to disrupt the genes rnc, era, and recO showed that era is essential for E. coli growth but that rnc and recO are dispensable.
Collapse
Affiliation(s)
- H E Takiff
- Laboratory of Molecular Oncology, National Cancer Institute-Frederick Cancer Research Facility, Maryland 21701
| | | | | |
Collapse
|
29
|
Abstract
Messenger RNA decay plays an important role in prokaryotic gene expression. The disparate stabilities of bacterial messages in vivo are a consequence of their differential susceptibility to degradation by cellular endoribonucleases and 3' -exoribonucleases, which in turn results from differences in mRNA sequence and structure. RNase II and polynucleotide phosphorylase, the major bacterial exonucleases involved in mRNA turnover, rapidly degrade single-stranded RNA from the 3' end, but are impeded by 3' stem-loop structures. At present, the identify and substrate specificity of the endonucleases that control mRNA decay rates are relatively poorly defined. Ribosomes and antisense RNA also can influence the stability of transcripts with which they associate. Differences in mRNA stability can contribute to differential expression of genes within polycistronic operons and to modulation of gene expression in response to changes in bacterial growth conditions.
Collapse
Affiliation(s)
- J G Belasco
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA
| | | |
Collapse
|
30
|
Srivastava AK, Schlessinger D. Coregulation of processing and translation: mature 5' termini of Escherichia coli 23S ribosomal RNA form in polysomes. Proc Natl Acad Sci U S A 1988; 85:7144-8. [PMID: 3050989 PMCID: PMC282140 DOI: 10.1073/pnas.85.19.7144] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In Escherichia coli, the final maturation of rRNA occurs in precursor particles, and recent experiments have suggested that ongoing protein synthesis may somehow be required for maturation to occur. The protein synthesis requirement for the formation of the 5' terminus of 23S rRNA has been clarified in vitro by varying the substrate of the reaction. In cell extracts, pre-23S rRNA in free ribosomes was not matured, but that in polysomes was efficiently processed. The reaction occurred in polysomes without the need for an energy source or other additives required for protein synthesis. Furthermore, when polysomes were dissociated into ribosomal subunits, they were no longer substrates for maturation; but the ribosomes became substrates again when they once more were incubated in the conditions for protein synthesis. All of these results are consistent with the notion that protein synthesis serves to form a polysomal complex that is the true substrate for maturation. Ribosomes in polysomes, possibly in the form of 70S initiation complexes, may more easily adopt a conformation that facilitates maturation cleavage. As a result, the rates of ribosome formation and protein synthesis could be coregulated.
Collapse
Affiliation(s)
- A K Srivastava
- Department of Microbiology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110
| | | |
Collapse
|
31
|
Takata R, Mukai T, Hori K. RNA processing by RNase III is involved in the synthesis of Escherichia coli polynucleotide phosphorylase. MOLECULAR & GENERAL GENETICS : MGG 1987; 209:28-32. [PMID: 2823071 DOI: 10.1007/bf00329832] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The synthesis of Escherichia coli polynucleotide phosphorylase (PNPase) was examined in a mutant strain defective in the RNA processing enzyme RNase III (Rnc-). We found that the specific activity and the synthesis rate of PNPase were increased in the Rnc- strain by more than three times that in an Rnc+ strain. Such increased synthesis of PNPase was not observed in a mutant strain transformed with a plasmid carrying the rnc+ gene. Quantitative analysis of RNA showed that the transcripts from the pnp gene, which encodes PNPase, were degraded more slowly in the Rnc- strain than in the Rnc+ strain. These results indicate that processing of the transcripts by RNase III is intimately involved in controlling the expression of pnp by affecting the stability of its messenger RNA.
Collapse
Affiliation(s)
- R Takata
- Department of Biology, Saga Medical School, Japan
| | | | | |
Collapse
|
32
|
King TC, Sirdeskmukh R, Schlessinger D. Nucleolytic processing of ribonucleic acid transcripts in procaryotes. Microbiol Rev 1986; 50:428-51. [PMID: 2432388 PMCID: PMC373081 DOI: 10.1128/mr.50.4.428-451.1986] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
MESH Headings
- Bacteria/genetics
- Bacteria/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribonucleases/metabolism
- Transcription, Genetic
Collapse
|
33
|
Sirdeshmukh R, Schlessinger D. Ordered processing of Escherichia coli 23S rRNA in vitro. Nucleic Acids Res 1985; 13:5041-54. [PMID: 2991850 PMCID: PMC321848 DOI: 10.1093/nar/13.14.5041] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In an RNase III-deficient strain of E. coli 23S pre-rRNA accumulates unprocessed in 50S ribosomes and in polysomes. These ribosomes provide a substrate for the analysis of rRNA maturation in vitro. S1 nuclease protection analysis of the products obtained in in vitro processing reactions demonstrates that 23S rRNA processing is ordered. The double stranded stem of 23S rRNA is cleaved by RNase III in vitro to two intermediate RNAs at the 5' end and one at the 3' end. Mature termini are then produced by other enzyme(s) in a soluble protein fraction from wild-type cells. The nature of the reaction at the 5' end is not clear, but the reaction at the 3' end is exonucleolytic, producing three heterogeneous mature termini. The two reactions are coordinated; 3' end maturation progresses concurrently with cleavages at the 5' end. Two results suggest a possible link between final maturation and translation: in vitro, mature termini are formed efficiently in the presence of additives required for protein synthesis; and all the processing intermediates detected from in vitro reactions are also found in polysomes from wild-type cells.
Collapse
|
34
|
Sirdeshmukh R, Krych M, Schlessinger D. Escherichia coli 23S ribosomal RNA truncated at its 5' terminus. Nucleic Acids Res 1985; 13:1185-92. [PMID: 2987818 PMCID: PMC341065 DOI: 10.1093/nar/13.4.1185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In a strain of E. coli deficient in RNase III (ABL1), 23S rRNA has been shown to be present in incompletely processed form with extra nucleotides at both the 5' and 3' ends (King et al., 1984, Proc. Natl. Acad. Sci. U.S. 81, 185-188). RNA molecules with four different termini at the 5' end are observed in vivo, and are all found in polysomes. The shortest of these ("C3") is four nucleotides shorter than the accepted mature terminus. In growing cells of both wild-type and mutant strains up to 10% of the 23S rRNA chains contain the 5' C3 terminus. In stationary phase cells, the proportion of C3 termini remains the same in the wild-type cells; but C3 becomes the dominant terminus in the mutant. Species C3 is also one of the 5' termini of 23S rRNA generated in vitro from larger precursors by the action of purified RNase III. We therefore suggest that some form of RNase III may still exist in the mutant; and since no cleavage is detectable at any other RNase III-specific site, the remaining enzyme would have a particular affinity for the C3 cleavage site, especially in stationary phase cells. We raise the question whether the C3 terminus has a special role in cellular metabolism.
Collapse
|
35
|
Schmeissner U, McKenney K, Rosenberg M, Court D. Removal of a terminator structure by RNA processing regulates int gene expression. J Mol Biol 1984; 176:39-53. [PMID: 6234400 DOI: 10.1016/0022-2836(84)90381-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The int gene of phage lambda encodes a protein involved in site-specific recombination. Its expression is regulated differentially during successive phases of the lambda infective cycle. The gene is transcribed early after infection from one promoter, pL, and later from a second promoter pI. Each transcription event requires different positive activation factors, lambda N and cII proteins, respectively. Transcription from the pI promoter, located adjacent to int, passes through int and terminates 277 nucleotides beyond int at tI. Polymerases initiating at pL transcribe through tI and into the b segment of lambda DNA. The read-through pL transcript is sensitive to cleavage by the endonuclease, RNase III, both in vivo and in vitro. Two specific cuts are made by RNase III in a double-stranded structure about 260 nucleotides beyond int in the location of the tI terminator. Functionally, the processed pL transcript is unable to synthesize the int gene product, whereas the terminated and unprocessed pI transcript expresses int. Interestingly, unprocessed pL transcripts made in hosts defective in RNase III (rnc-) can express int. Thus a correlation exists between processing and negative control of int expression. The place where processing occurs, some 260 nucleotides beyond int, is called sib, and the control of int expression from this site is called retroregulation. Retroregulation by sib is not restricted just to the int gene; we show that if the sib site is cloned beyond a bacterial gene, the gene is controlled by sib and RNase III. Specific models are discussed with respect to control of gene expression by RNase III from a site beyond the controlled gene.
Collapse
|
36
|
Nasoff MS, Baker HV, Wolf RE. DNA sequence of the Escherichia coli gene, gnd, for 6-phosphogluconate dehydrogenase. Gene X 1984; 27:253-64. [PMID: 6329905 DOI: 10.1016/0378-1119(84)90070-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Expression of gnd of Escherichia coli, which encodes 6-phosphogluconate dehydrogenase, an enzyme of the hexose monophosphate shunt, is subject to growth rate-dependent regulation and is gene dosage-dependent: the level of the enzyme increases in direct proportion to the cellular growth rate at both low and high gene copy numbers. We have determined the nucleotide sequence of gnd and flanking control regions, the 5'-end of in vivo gnd mRNA, and the start codon of the structural gene. Analysis of the sequence indicated that: (i) the gnd promoter is typical of other E. coli promoters and the structural gene is followed by a rho-independent transcription termination signal; (ii) the 56-nucleotide leader of gnd mRNA does not contain a rho-independent transcription termination signal, so growth rate-dependent regulation of 6-phosphogluconate dehydrogenase level is not carried out by an attenuation mechanism analogous to the one that controls expression of the E. coli ampC gene; (iii) the codon composition of the structural gene resembles that of other highly expressed E. coli genes and thus is not responsible for the regulation either; (iv) the structural gene is preceded at an optimal distance by a strong Shine-Dalgarno (SD) sequence, AGGAG ; (v) the leader region of the mRNA contains regions of dyad symmetry that have the potential to sequester the SD sequence and the start codon. This latter feature of the gene suggests that growth rate-dependent regulation may involve regulation of translation initiation frequency.
Collapse
|
37
|
King TC, Sirdeshmukh R, Schlessinger D. RNase III cleavage is obligate for maturation but not for function of Escherichia coli pre-23S rRNA. Proc Natl Acad Sci U S A 1984; 81:185-8. [PMID: 6364133 PMCID: PMC344635 DOI: 10.1073/pnas.81.1.185] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RNase III makes the initial cleavages that excise Escherichia coli precursor 16S and 23S rRNA from a single large primary transcript. In mutants deficient in RNase III, no species cleaved by RNase III are detected and the processing of 23S rRNA precursors to form mature 23S rRNA fails entirely. Instead, 50S ribosomes are formed with rRNAs up to several hundred nucleotides longer than mature 23S rRNA. Unexpectedly, these aberrant subunits function well enough to participate in protein synthesis and permit cell growth. Consistent with the inference that RNase III cleavages are absolutely required for 23S rRNA maturation, when 50S ribosomes from a strain deficient in RNase III were incubated with a ribosome-free extract from a RNase III+ strain, rRNA species processed by RNase III and species with normal mature 23S rRNA termini were produced.
Collapse
|
38
|
|
39
|
Farrish EE, Baker HV, Wolf RE. Different control circuits for growth rate-dependent regulation of 6-phosphogluconate dehydrogenase and protein components of the translational machinery in Escherichia coli. J Bacteriol 1982; 152:584-94. [PMID: 6182137 PMCID: PMC221505 DOI: 10.1128/jb.152.2.584-594.1982] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Previous studies showed that the level of 6-phosphogluconate (6PG) dehydrogenase increases about fourfold with increasing growth rate when the growth rate is varied by varying the carbon source. When the growth rate was reduced by anaerobic growth or by using mutations to divert metabolism to less efficient pathways, the level of 6PG dehydrogenase was the same as in a wild-type strain growing aerobically on other carbon sources that yielded the same growth rate. Thus, expression of gnd, which encodes 6PG dehydrogenase, is regulated by the cellular growth rate and not by specific nutrients in the medium. Growth rate-dependent regulation was independent of temperature. After a nutritional shift-up, 6PG dehydrogenase and total protein did not attain the postshift rate of accumulation for 30 min, whereas RNA accumulation increased immediately. The kinetics of accumulation of 6PG dehydrogenase and RNA were coincident after a nutritional shift-down. Partial amino acid starvation of a strain that controls RNA synthesis stringently (rel+) had no effect on the differential rate of accumulation of the enzyme. The level of 6PG dehydrogenase in cells harboring a gnd+ multicopy plasmid was in approximate proportion to gene dosage and somewhat higher at faster growth rates. Growth rate control of chromosomal gnd was normal in strains carrying multiple copies of the promoter-proximal and promoter-distal portions of gnd. These results show that gnd is not part of the same regulatory network as components of the translational apparatus since gnd shows a delayed response to a nutritional shift-up, is not autoregulated, and is not subject to stringent control. Models to account for growth rate-dependent regulation of gnd are discussed.
Collapse
|
40
|
Saito H, Richardson CC. Processing of mRNA by ribonuclease III regulates expression of gene 1.2 of bacteriophage T7. Cell 1981; 27:533-42. [PMID: 6101205 DOI: 10.1016/0092-8674(81)90395-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A bacteriophage T7 mutation, HS9, is phenotypically defective in gene 1.2, although it maps outside the gene. The single nucleotide change responsible for the HS9 mutation lies within the RNAase III recognition site immediately following gene 1.2. This RNAase III recognition site, responsible for the processing of the mRNA encoding genes 1.1 and 1.2, contains two cleavage sites, separated by 29 bases. The HS9 mutation prevents cutting by RNAase III at one site in vitro, yielding a mRNA containing an additional 29 bases at its 3' end. The ten second-site reversion mutations of HS9 are all located in the RNAase III recognition site and either restore or eliminate cutting at both sites. RNAase III mutants of Escherichia coli phenotypically suppress the HS9 mutation. We propose that the extra 29 bases at the 3' end of the mRNA hybridize to the ribosome-binding site of gene 1.1; gene 1.1 immediately precedes gene 1.2 on the same mRNA molecule. Such hybridization prevents the initiation of translation of this mRNA containing gene 1.1. A strong polar effect represses the translation of gene 1.2.
Collapse
Affiliation(s)
- H Saito
- Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
41
|
|
42
|
Goldblum K, Apririon D. Inactivation of the ribonucleic acid-processing enzyme ribonuclease E blocks cell division. J Bacteriol 1981; 146:128-32. [PMID: 6163761 PMCID: PMC217061 DOI: 10.1128/jb.146.1.128-132.1981] [Citation(s) in RCA: 116] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Escherichia coli endoribonuclease ribonuclease E, the enzyme responsible for the processing of precursor 5S ribosomal ribonucleic acid (RNA) from the nascent ribosomal RNA transcript, is thermolabile in rne-3071 mutants. When cells of such a strain were shifted to a nonpermissive temperature, the function of ribonuclease E was almost instantaneously inactivated. However, a threefold linear increase in absorbance took place over a 3-h period, and similar linear increases occurred in all the macromolecules we measured, including deoxyribonucleic acid, RNA, protein, and lipopolysaccharides. Interestingly, during this period, the cells elongated but failed to divide. Thus, these experiments suggest that an early effect of inactivation of the RNA processing enzyme ribonuclease E is a block in cell division.
Collapse
|
43
|
|
44
|
Ray BK, Apirion D. Transfer RNA precursors are accumulated in Escherichia coli in the absence of RNase E. EUROPEAN JOURNAL OF BIOCHEMISTRY 1981; 114:517-24. [PMID: 6263617 DOI: 10.1111/j.1432-1033.1981.tb05175.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A temperature-sensitive Escherichia coli mutant, which contains a heat-labile RNase E, fails to produce 5-S rRNA at a non-permissive temperature. It accumulates a number of RNA molecules in the 4-12-S range. One of these molecules, a 9-S RNA, is a precursor to 5-S rRNA [Ghora, B. K. and Apirion, D. (1978) Cell, 15, 1055-1056]. These molecules were purified and processed in a cell-free system. Some of these RNA molecules, after processing, give rise to products the size of transfer RNA, but not to 5-S-rRNA. Further characterization of the processed products of one such precursor molecule shows that it contains tRNA1Leu and tRNA1His. RNase E is necessary but not sufficient for the processing of this molecule to mature tRNAs in vitro. The accumulation of such tRNA precursors in an RNase E mutant cell and the obligatory participation of RNase E in its processing indicate that RNase E functions in the maturation of transfer RNAs as well as of 5-S rRNA.
Collapse
|
45
|
Abstract
A transducing bacteriophage lambda Ch25rne+, which codes for ribonuclease E of E. coli, has been isolated. To achieve this a random library of Escherichia coli HindIII fragments was cloned in the lambda Charon 25 vector (prepared in F.R. Blattner's laboratory), and lambda Ch25rne+ was selected by its ability upon lysogenization to enable a temperature-sensitive (ts) rne-3071 mutant to grow and to exhibit normal RNA processing at the nonpermissive temperature of 45 degrees C. The level of RNase E was doubled in an rne+ strain lysogenized with lambda Ch25rne+. lambda Ch25rne+ directs the synthesis of a polypeptide of 71 000 m.wt., which is the size of RNase E. Restriction analysis and electron micrography of heteroduplexes suggested that the size of the host DNA insert is about 1.9 kb.
Collapse
|