Kuettel S, Mosimann M, Mäser P, Kaiser M, Brun R, Scapozza L, Perozzo R. Adenosine Kinase of T. b. Rhodesiense identified as the putative target of 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine using chemical proteomics.
PLoS Negl Trop Dis 2009;
3:e506. [PMID:
19707572 PMCID:
PMC2724708 DOI:
10.1371/journal.pntd.0000506]
[Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 07/23/2009] [Indexed: 11/20/2022] Open
Abstract
Background
Human African trypanosomiasis (HAT), a major parasitic disease spread in Africa, urgently needs novel targets and new efficacious chemotherapeutic agents. Recently, we discovered that 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine (compound 1) exhibits specific antitrypanosomal activity with an IC50 of 1.0 µM on Trypanosoma brucei rhodesiense (T. b. rhodesiense), the causative agent of the acute form of HAT.
Methodology/Principal Findings
In this work we show adenosine kinase of T. b. rhodesiense (TbrAK), a key enzyme of the parasite purine salvage pathway which is vital for parasite survival, to be the putative intracellular target of compound 1 using a chemical proteomics approach. This finding was confirmed by RNA interference experiments showing that down-regulation of adenosine kinase counteracts compound 1 activity. Further chemical validation demonstrated that compound 1 interacts specifically and tightly with TbrAK with nanomolar affinity, and in vitro activity measurements showed that compound 1 is an enhancer of TbrAK activity. The subsequent kinetic analysis provided strong evidence that the observed hyperactivation of TbrAK is due to the abolishment of the intrinsic substrate-inhibition.
Conclusions/Significance
The results suggest that TbrAK is the putative target of this compound, and that hyperactivation of TbrAK may represent a novel therapeutic strategy for the development of trypanocides.
Human African trypanosomiasis (HAT), a devastating and fatal parasitic disease endemic in sub-Saharan Africa, urgently needs novel targets and efficacious chemotherapeutic agents. Recently, we discovered that 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine exhibits specific antitrypanosomal activity toward T. b. rhodesiense, the causative agent of the acute form of HAT. Here we applied a chemical proteomics approach to find the cellular target of this compound. Adenosine kinase, a key enzyme of the parasite purine salvage pathway, was isolated and identified as compound binding partner. Direct binding assays using recombinant protein, and tests on an adenosine kinase knock-down mutant of the parasite produced by RNA interference confirmed TbrAK as the putative target. Kinetic analyses showed that the title compound is an activator of adenosine kinase and that the observed hyperactivation of TbrAK is due to the abolishment of the intrinsic substrate-inhibition. Whereas hyperactivation as a mechanism of action is well known from drugs targeting cell signaling, this is a novel and hitherto unexplored concept for compounds targeting metabolic enzymes, suggesting that hyperactivation of TbrAK may represent a novel therapeutic strategy for the development of trypanocides.
Collapse