1
|
Florentz C, Giegé R. History of tRNA research in strasbourg. IUBMB Life 2019; 71:1066-1087. [PMID: 31185141 DOI: 10.1002/iub.2079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
The tRNA molecules, in addition to translating the genetic code into protein and defining the second genetic code via their aminoacylation by aminoacyl-tRNA synthetases, act in many other cellular functions and dysfunctions. This article, illustrated by personal souvenirs, covers the history of ~60 years tRNA research in Strasbourg. Typical examples point up how the work in Strasbourg was a two-way street, influenced by and at the same time influencing investigators outside of France. All along, research in Strasbourg has nurtured the structural and functional diversity of tRNA. It produced massive sequence and crystallographic data on tRNA and its partners, thereby leading to a deeper physicochemical understanding of tRNA architecture, dynamics, and identity. Moreover, it emphasized the role of nucleoside modifications and in the last two decades, highlighted tRNA idiosyncrasies in plants and organelles, together with cellular and health-focused aspects. The tRNA field benefited from a rich local academic heritage and a strong support by both university and CNRS. Its broad interlinks to the worldwide community of tRNA researchers opens to an exciting future. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1066-1087, 2019.
Collapse
Affiliation(s)
- Catherine Florentz
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France.,Direction de la Recherche et de la Valorisation, Université de Strasbourg, F-67084, 4 rue Blaise Pascal, Strasbourg, France
| | - Richard Giegé
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France
| |
Collapse
|
2
|
Ryckelynck M, Giegé R, Frugier M. Yeast tRNA(Asp) charging accuracy is threatened by the N-terminal extension of aspartyl-tRNA synthetase. J Biol Chem 2003; 278:9683-90. [PMID: 12486031 DOI: 10.1074/jbc.m211035200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study evaluates the role of the N-terminal extension from yeast aspartyl-tRNA synthetase in tRNA aspartylation. The presence of an RNA-binding motif in this extension, conserved in eukaryotic class IIb aminoacyl-tRNA synthetases, provides nonspecific tRNA binding properties to this enzyme. Here, it is assumed that the additional contacts the 70 amino acid-long appendix of aspartyl-tRNA synthetase makes with tRNA could be important in expression of aspartate identity in yeast. Using in vitro transcripts mutated at identity positions, it is demonstrated that the extension grants better aminoacylation efficiency but reduced specificity to the synthetase, increasing considerably the risk of noncognate tRNA mischarging. Yeast tRNA(Glu(UUC)) and tRNA(Asn(GUU)) were identified as the most easily mischarged tRNA species. Both have a G at the discriminator position, and their anticodon differs only by one change from the GUC aspartate anticodon.
Collapse
Affiliation(s)
- Michaël Ryckelynck
- Département Mécanismes et Macromolécules de la Synthèse Protéique et Cristallogenèse, UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | | | | |
Collapse
|
3
|
Kern D, Lorber B, Boulanger Y, Giege R. A peculiar property of aspartyl-tRNA synthetase from bakers' yeast: chemical modification of the protein by the enzymically synthesized aminoacyl adenylate. Biochemistry 2002. [DOI: 10.1021/bi00327a009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Walter F, Pütz J, Giegé R, Westhof E. Binding of tobramycin leads to conformational changes in yeast tRNA(Asp) and inhibition of aminoacylation. EMBO J 2002; 21:760-8. [PMID: 11847123 PMCID: PMC125865 DOI: 10.1093/emboj/21.4.760] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aminoglycosides inhibit translation in bacteria by binding to the A site in the ribosome. Here, it is shown that, in yeast, aminoglycosides can also interfere with other processes of translation in vitro. Steady-state aminoacylation kinetics of unmodified yeast tRNA(Asp) transcript indicate that the complex between tRNA(Asp) and tobramycin is a competitive inhibitor of the aspartylation reaction with an inhibition constant (K(I)) of 36 nM. Addition of an excess of heterologous tRNAs did not reverse the charging of tRNA(Asp), indicating a specific inhibition of the aspartylation reaction. Although magnesium ions compete with the inhibitory effect, the formation of the aspartate adenylate in the ATP-PP(i) exchange reaction by aspartyl-tRNA synthetase in the absence of the tRNA is not inhibited. Ultraviolet absorbance melting experiments indicate that tobramycin interacts with and destabilizes the native L-shaped tertiary structure of tRNA(Asp). Fluorescence anisotropy using fluorescein-labelled tobramycin reveals a stoichiometry of one molecule bound to tRNA(Asp) with a K(D) of 267 nM. The results indicate that aminoglycosides are biologically effective when their binding induces a shift in a conformational equilibrium of the RNA.
Collapse
Affiliation(s)
| | | | | | - Eric Westhof
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
Corresponding author e-mail:
| |
Collapse
|
5
|
Felden B, Florentz C, Westhof E, Giegé R. Transfer RNA identity rules and conformation of the tyrosine tRNA-like domain of BMV RNA imply additional charging by histidine and valine. Biochem Biophys Res Commun 1998; 243:426-34. [PMID: 9480825 DOI: 10.1006/bbrc.1997.7753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This paper reports the first example of a triple aminoacylation specificity of a viral tRNA-like domain. These findings were based on structural studies on the brome mosaic virus (BMV) tRNA-like domain (Felden et al., 1994, J. Mol. Biol. 235, 508-531) together with knowledge on tRNA aminoacylation identity rules suggesting potential histidinylation and valylation capacities of the viral RNA in addition to its already known tyrosylation ability. Here, both predictions are demonstrated by in vitro aminoacylation assays. Kinetic parameters of histidinylation and valylation of BMV tRNA-like structure have been determined and compared to those of the corresponding tRNA transcripts and to the tyrosylation capacity of the molecule. The influence of experimental conditions on aminoacylation reactions was also studied. The novel aminoacylation capacities of BMV tRNA-like domain support its already reported three-dimensional fold and illustrate the predictive potential of modeling data. Biological necessity of specific or non specific aminoacylation will be discussed.
Collapse
MESH Headings
- Base Sequence
- Bromovirus/chemistry
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Fungal/chemistry
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer, His/chemistry
- RNA, Transfer, Tyr/chemistry
- RNA, Transfer, Val/chemistry
- RNA, Viral/chemistry
- Substrate Specificity
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- B Felden
- Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France.
| | | | | | | |
Collapse
|
6
|
Mazauric MH, Reinbolt J, Lorber B, Ebel C, Keith G, Giegé R, Kern D. An example of non-conservation of oligomeric structure in prokaryotic aminoacyl-tRNA synthetases. Biochemical and structural properties of glycyl-tRNA synthetase from Thermus thermophilus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:814-26. [PMID: 8944770 DOI: 10.1111/j.1432-1033.1996.00814.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycyl-tRNA synthetase (Gly-tRNA synthetase) from Thermus thermophilus was purified to homogeneity and with high yield using a five-step purification procedure in amounts sufficient to solve its crystallographic structure [Logan, D.T., Mazauric, M.-H., Kern, D. & Moras, D. (1995) EMBO J. 14, 4156-4167]. Molecular-mass determinations of the native and denatured protein indicate an oligomeric structure of the alpha 2 type consistent with that found for eukaryotic Gly-tRNA synthetases (yeast and Bombyx mori), but different from that of Gly-tRNA synthetases from mesophilic prokaryotes (Escherichia coli and Bacillus brevis) which are alpha 2 beta 2 tetramers. N-terminal sequencing of the polypeptide chain reveals significant identity, reaching 50% with those of the eukaryotic enzymes (B. mori, Homo sapiens, yeast and Caenorhabditis elegans) but no significant identity was found with both alpha and beta chains of the prokaryotic enzymes (E. coli, Haemophilus influenzae and Coxiella burnetii) albeit the enzyme is deprived of the N-terminal extension characterizing eukaryotic synthetases. Thus, the thermophilic Gly-tRNA synthetase combines strong structural homologies of eukaryotic Gly-tRNA synthetases with a feature of prokaryotic synthetases. Heat-stability measurements show that this synthetase keeps its ATP-PPi exchange and aminoacylation activities up to 70 degrees C. Glycyladenylate strongly protects the enzyme against thermal inactivation at higher temperatures. Unexpectedly, tRNA(Gly) does not induce protection. Cross-aminoacylations reveal that the thermophilic Gly-tRNA synthetase charges heterologous E. coli tRNA(gly(GCC)) and tRNA(Gly(GCC)) and yeast tRNA(Gly(GCC)) as efficiently as T. thermophilus tRNA(Gly). All these aminoacylation reactions are characterized by similar activation energies as deduced from Arrhenius plots. Therefore, contrary to the E. coli and H. sapiens Gly-tRNA synthetases, the prokaryotic thermophilic enzyme does not possess a strict species specificity. The results are discussed in the context of the three-dimensional structure of the synthetase and in the view of the particular evolution of the glycinylation systems.
Collapse
Affiliation(s)
- M H Mazauric
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Structure/function relationships accounting for specific tRNA charging by class II aspartyl-tRNA synthetases from Saccharomyces cerevisiae, Escherichia coli and Thermus thermophilus are reviewed. Effects directly linked to tRNA features are emphasized and aspects about synthetase contribution in expression of tRNA(Asp) identity are also covered. Major identity nucleotides conferring aspartate specificity to yeast, E coli and T thermophilus tRNAs comprise G34, U35, C36, C38 and G73, a set of nucleotides conserved in tRNA(Asp) molecules of other biological origin. Aspartate specificity can be enhanced by negative discrimination preventing, eg mischarging of native yeast tRNA(Asp by yeast arginyl-tRNA synthetase. In the yeast system crystallography shows that identity nucleotides are in contact with identity amino acids located in the catalytic and anticodon binding domains of the synthetase. Specificity of RNA/protein interaction involves a conformational change of the tRNA that optimizes the H-bonding potential of the identity signals on both partners of the complex. Mutation of identity nucleotides leads to decreased aspartylation efficiencies accompanied by a loss of specific H-bonds and an altered adaptation of tRNA on the synthetase. Species-specific characteristics of aspartate systems are the number, location and nature of minor identity signals. These features and the structural variations in aspartate tRNAs and synthetases are correlated with mechanistic differences in the aminoacylation reactions catalyzed by the various aspartyl-tRNA synthetases. The reality of the aspartate identity set is verified by its functional expression in a variety of RNA frameworks. Inversely a number of identities can be expressed within a tRNA(Asp) framework. From this emerged the concept of the RNA structural frameworks underlying expression of identities which is illustrated with data obtained with engineered tRNAs. Efficient aspartylation of minihelices is explained by the primordial role of G73. From this and other considerations it is suggested that aspartate identity appeared early in the history of tRNA aminoacylation systems.
Collapse
Affiliation(s)
- R Giegé
- Unité Structure des Macromolécules Biologioues et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
8
|
Pütz J, Florentz C, Benseler F, Giegé R. A single methyl group prevents the mischarging of a tRNA. NATURE STRUCTURAL BIOLOGY 1994; 1:580-2. [PMID: 7634096 DOI: 10.1038/nsb0994-580] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Frugier M, Söll D, Giegé R, Florentz C. Identity switches between tRNAs aminoacylated by class I glutaminyl- and class II aspartyl-tRNA synthetases. Biochemistry 1994; 33:9912-21. [PMID: 8060999 DOI: 10.1021/bi00199a013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
High-resolution X-ray structures for the tRNA/aminoacyl-tRNA synthetase complexes between Escherichia coli tRNAGln/GlnRS and yeast tRNAAsp/AspRS have been determined. Positive identity nucleotides that direct aminoacylation specificity have been defined in both cases; E. coli tRNAGln identity is governed by 10 elements scattered in the tRNA structure, while specific aminoacylation of yeast tRNAAsp is dependent on 5 positions. Both identity sets are partially overlapping and share 3 nucleotides. Interestingly, the two enzymes belong to two different classes described for aminoacyl-tRNA synthetases. The class I glutaminyl-tRNA synthetase and the class II aspartyl-tRNA synthetase recognize their cognate tRNA from opposite sides. Mutants derived from glutamine and aspartate tRNAs have been created by progressively introducing identity elements from one tRNA into the other one. Glutaminylation and aspartylation assays of the transplanted tRNAs show that identity nucleotides from a tRNA originally aminoacylated by a synthetase from one class are still recognized if they are presented to the enzyme in a structural framework corresponding to a tRNA aminoacylated by a synthetase belonging to the other class. The simple transplantation of the glutamine identity set into tRNAAsp is sufficient to obtain glutaminylatable tRNA, but additional subtle features seem to be important for the complete conversion of tRNAGln in an aspartylatable substrate. This study defines C38 in yeast tRNAAsp as a new identity nucleotide for aspartylation. We show also in this paper that, during the complex formation, aminoacyl-tRNA synthetases are at least partially responsible for conformational changes which involve structural constraints in tRNA molecules.
Collapse
Affiliation(s)
- M Frugier
- Unité Propre de Recherche Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | |
Collapse
|
10
|
Rudinger J, Blechschmidt B, Ribeiro S, Sprinzl M. Minimalist aminoacylated RNAs as efficient substrates for elongation factor Tu. Biochemistry 1994; 33:5682-8. [PMID: 8180193 DOI: 10.1021/bi00185a003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We demonstrate here, using RNA variants derived from tRNAAsp, that the minimalist aminoacylated structure able to interact efficiently with elongation factor Tu comprises a 10 base-pair helix linked to the 3'-terminal NCCA sequence. Shorter structures can interact with the elongation factor, but with significantly decreased affinity. Conserved features in the aminoacyl acceptor branch of tRNAs, such as base pair G53-C61 and the T-loop architecture, could be replaced respectively by the inverted base pair C53-G61 and by unusual anticodon loop or tetraloop sequences. Variants of whole tRNAAsp or of the 12 base-pair aspartate minihelix, with enlarged 13 base-pair long aminoacyl acceptor branches, as in selenocysteine-inserting tRNAs that are not recognized by elongation factor Tu, keep their binding ability to this factor. These functional results are well accounted for by the crystallographic structure of the Thermus thermophilus binary EF-Tu.GTP complex, which possesses a binding cleft accommodating the minimalist 10 base-pair domain of the tRNA aminoacyl acceptor branch.
Collapse
Affiliation(s)
- J Rudinger
- Laboratorium für Biochemie, Universität Bayreuth, Germany
| | | | | | | |
Collapse
|
11
|
Frugier M, Florentz C, Schimmel P, Giegé R. Triple aminoacylation specificity of a chimerized transfer RNA. Biochemistry 1993; 32:14053-61. [PMID: 8268184 DOI: 10.1021/bi00213a039] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We report here the rational design and construction of a chimerized transfer RNA with tripartite aminoacylation specificity. A yeast aspartic acid specific tRNA was transformed into a highly efficient acceptor of alanine and phenylalanine and a moderate acceptor of valine. The transformation was guided by available knowledge of the requirements for aminoacylation by each of the three amino acids and was achieved by iterative changes in the local sequence context and the structural framework of the variable loop and the two variable regions of the dihydrouridine loop. The changes introduced to confer efficient acceptance of the three amino acids eliminate aminoacylation with aspartate. The interplay of determinants and antideterminants for different specific aminoacylations, and the constraints imposed by the structural framework, suggest that a tRNA with an appreciable capacity for more than three efficient aminoacylations may be inherently difficult to achieve.
Collapse
Affiliation(s)
- M Frugier
- Unité Propre de Recherche Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | |
Collapse
|
12
|
Eriani G, Cavarelli J, Martin F, Dirheimer G, Moras D, Gangloff J. Role of dimerization in yeast aspartyl-tRNA synthetase and importance of the class II invariant proline. Proc Natl Acad Sci U S A 1993; 90:10816-20. [PMID: 8248175 PMCID: PMC47869 DOI: 10.1073/pnas.90.22.10816] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cytoplasmic aspartyl-tRNA synthetase (AspRS; EC 6.1.1.12) from yeast is, as are most class II synthetases, an alpha 2 dimer. The only invariant amino acid in signature motif 1 of this class is Pro-273; this residue is located at the dimer interface. To understand the role of Pro-273 in the conserved dimeric configuration, we tested the effect of a Pro-273-->Gly (P273G) substitution on the catalytic properties of homo- and heterodimeric AspRS. Heterodimers of AspRS were produced in vivo by overexpression of their respective subunit variants from plasmid-encoded genes and purified to homogeneity in one HPLC step. The homodimer containing the P273G shows an 80% inactivation of the enzyme and an affinity decrease for its cognate tRNA(Asp) of one order of magnitude. The P273G-mutated subunit recovered wild-type enzymatic properties when associated with a native subunit or a monomer otherwise inactivated having an intact dimeric interface domain. These results, which can be explained by the crystal structure of the native enzyme complexed with its substrates, confirm the structural importance of Pro-273 for dimerization and clearly establish the functional interdependence of the AspRS subunits. More generally, the dimeric conformation may be a structural prerequisite for the activity of mononucleotide binding sites constructed from antiparallel beta strands.
Collapse
Affiliation(s)
- G Eriani
- Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance UPR 9002, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
13
|
Puglisi JD, Pütz J, Florentz C, Giegé R. Influence of tRNA tertiary structure and stability on aminoacylation by yeast aspartyl-tRNA synthetase. Nucleic Acids Res 1993; 21:41-9. [PMID: 8441619 PMCID: PMC309063 DOI: 10.1093/nar/21.1.41] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mutations have been designed that disrupt the tertiary structure of yeast tRNA(Asp). The effects of these mutations on both tRNA structure and specific aspartylation by yeast aspartyl-tRNA synthetase were assayed. Mutations that disrupt tertiary interactions involving the D-stem or D-loop result in destabilization of the base-pairing in the D-stem, as monitored by nuclease digestion and chemical modification studies. These mutations also decrease the specificity constant (kcat/Km) for aspartylation by aspartyl-tRNA synthetase up to 10(3)-10(4) fold. The size of the T-loop also influences tRNA(Asp) structure and function; change of its T-loop to a tetraloop (-UUCG-) sequence results in a denatured D-stem and an almost 10(4) fold decrease of kcat/Km for aspartylation. The negative effects of these mutations on aspartylation activity are significantly alleviated by additional mutations that stabilize the D-stem. These results indicate that a critical role of tertiary structure in tRNA(Asp) for aspartylation is the maintenance of a base-paired D-stem.
Collapse
Affiliation(s)
- J D Puglisi
- UPR Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | |
Collapse
|
14
|
Garcia A, Giege R. Footprinting evidence for close contacts of the yeast tRNA(Asp) anticodon region with aspartyl-tRNA synthetase. Biochem Biophys Res Commun 1992; 186:956-62. [PMID: 1497679 DOI: 10.1016/0006-291x(92)90839-d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chemical footprinting experiments on brewer's yeast tRNA(Asp) complexed to its cognate aspartyl-tRNA synthetase are reported: they demonstrate that bases of the anticodon loop, including the anticodon itself, are in close proximity with the synthetase. Contacts were determined using dimethylsulfate as the probe for testing reactivity of guanine and cytosine residues in free and complexed tRNA. Results correlate with the decrease in aspartylation activity of yeast tRNA(Asp) molecules mutated at these contact positions and will be compared with other structural data arising from solution and crystallographic studies on the aspartic acid complex.
Collapse
Affiliation(s)
- A Garcia
- Unité Propre de Recherche Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | |
Collapse
|
15
|
Rudinger J, Puglisi JD, Pütz J, Schatz D, Eckstein F, Florentz C, Giegé R. Determinant nucleotides of yeast tRNA(Asp) interact directly with aspartyl-tRNA synthetase. Proc Natl Acad Sci U S A 1992; 89:5882-6. [PMID: 1631068 PMCID: PMC49401 DOI: 10.1073/pnas.89.13.5882] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The interaction of wild-type and mutant yeast tRNA(Asp) transcripts with yeast aspartyl-tRNA synthetase (AspRS; EC 6.1.1.12) has been probed by using iodine cleavage of phosphorothioate-substituted transcripts. AspRS protects phosphates in the anticodon (G34, U35), D-stem (U25), and acceptor end (G73) that correspond to determinant nucleotides for aspartylation. This protection, as well as that in anticodon stem (C29, U40, G41) and D-stem (U11 to U13), is consistent with direct interaction of AspRS at these phosphates. Other protection, in the variable loop (G45), D-loop (G18, G19), and T-stem and loop (G53, U54, U55), as well as enhanced reactivity at G37, may result from conformational changes of the transcript upon binding to AspRS. Transcripts mutated at determinant positions showed a loss of phosphate protection in the region of the mutation while maintaining the global protection pattern. The ensemble of results suggests that aspartylation specificity arises from both protein-base and protein-phosphate contacts and that different regions of tRNA(Asp) interact independently with AspRS. A mutant transcript of yeast tRNA(Phe) that contains the set of identity nucleotides for specific aspartylation gave a phosphate protection pattern strikingly similar to that of wild-type tRNA(Asp). This confirms that a small number of nucleotides within a different tRNA sequence context can direct specific interaction with synthetase.
Collapse
Affiliation(s)
- J Rudinger
- Laboratoire de Biochimie, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Rudinger J, Florentz C, Dreher T, Giegé R. Efficient mischarging of a viral tRNA-like structure and aminoacylation of a minihelix containing a pseudoknot: histidinylation of turnip yellow mosaic virus RNA. Nucleic Acids Res 1992; 20:1865-70. [PMID: 1579487 PMCID: PMC312299 DOI: 10.1093/nar/20.8.1865] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mischarging of the valine specific tRNA-like structure of turnip yellow mosaic virus (TYMV) RNA has been tested in the presence of purified arginyl-, aspartyl-, histidinyl-, and phenylalanyl-tRNA synthetases from bakers' yeast. Important mischarging of a 264 nucleotide-long transcript was found with histidinyl-tRNA synthetase which can acylate this fragment up to a level of 25% with a loss of specificity (expressed as Vmax/KM ratios) of only 100 fold as compared to a yeast tRNA(His) transcript. Experiments on transcripts of various lengths indicate that the minimal valylatable fragment (n = 88) is the most efficient substrate for histidinyl-tRNA synthetase, with kinetic characteristics similar to those found for the control tRNA(His) transcript. Mutations in the anticodon or adjacent to the 3' CCA that severely affect the valylation capacity of the 264 nucleotide long TYMV fragment are without negative effect on its mischarging, and for some cases even improve its efficiency. A short fragment (n = 42) of the viral RNA containing the pseudoknot and corresponding to the amino acid accepting branch of the molecule is an efficient histidine acceptor.
Collapse
Affiliation(s)
- J Rudinger
- UPR Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | |
Collapse
|
17
|
Pütz J, Puglisi JD, Florentz C, Giegé R. Identity elements for specific aminoacylation of yeast tRNA(Asp) by cognate aspartyl-tRNA synthetase. Science 1991; 252:1696-9. [PMID: 2047878 DOI: 10.1126/science.2047878] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The nucleotides crucial for the specific aminoacylation of yeast tRNA(Asp) by its cognate synthetase have been identified. Steady-state aminoacylation kinetics of unmodified tRNA transcripts indicate that G34, U35, C36, and G73 are important determinants of tRNA(Asp) identity. Mutations at these positions result in a large decrease (19- to 530-fold) of the kinetic specificity constant (ratio of the catalytic rate constant kcat and the Michaelis constant Km) for aspartylation relative to wild-type tRNA(Asp). Mutation to G10-C25 within the D-stem reduced kcat/Km eightfold. This fifth mutation probably indirectly affects the presentation of the highly conserved G10 nucleotide to the synthetase. A yeast tRNA(Phe) was converted into an efficient substrate for aspartyl-tRNA synthetase through introduction of the five identity elements. The identity nucleotides are located in regions of tight interaction between tRNA and synthetase as shown in the crystal structure of the complex and suggest sites of base-specific contacts.
Collapse
Affiliation(s)
- J Pütz
- Laboratoire de Biochimie, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | |
Collapse
|
18
|
Eriani G, Dirheimer G, Gangloff J. Aspartyl-tRNA synthetase from Escherichia coli: cloning and characterisation of the gene, homologies of its translated amino acid sequence with asparaginyl- and lysyl-tRNA synthetases. Nucleic Acids Res 1990; 18:7109-18. [PMID: 2129559 PMCID: PMC332776 DOI: 10.1093/nar/18.23.7109] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
By screening of an Escherichia coli plasmidic library using antibodies against aspartyl-tRNA synthetase (AspRS) several clones were obtained containing aspS, the gene coding for AspRS. We report here the nucleotide sequence of aspS and the corresponding primary structure of the aspartyl-tRNA synthetase, a protein of 590 amino acid residues with a Mr 65,913, a value in close agreement with that observed for the purified protein. Primer extension analysis of the aspS mRNA using reverse transcriptase located its 5'-end at 94 nucleotides upstream of the translation initiation AUG; nuclease S1 analysis located the 3'-end at 126 nucleotides downstream of the stop codon UGA. Comparison of the DNA-derived protein sequence with known aminoacyl-tRNA sequences revealed important homologies with asparaginyl- and lysyl-tRNA synthetases from E.coli; more than 25% of their amino acid residues are identical, the homologies being distributed preferencially in the first part and the carboxy-terminal end of the molecule. Mutagenesis directed towards a consensus tetrapeptide (Gly-Leu-Asp-Arg) and the carboxy-terminal end showed that both domains could be implicated in catalysis as well as in ATP binding.
Collapse
Affiliation(s)
- G Eriani
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | |
Collapse
|
19
|
Kern D, Mejdoub H, Vincendon P, Boulanger Y, Reinbolt J. The three cysteine residues of cytoplasmic aspartyl-tRNA synthetase from Saccharomyces cerevisiae are not essential for its activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 193:97-103. [PMID: 2226452 DOI: 10.1111/j.1432-1033.1990.tb19309.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytoplasmic aspartyl-tRNA synthetase from Saccharomyces cerevisiae is a dimer made up of identical subunits (Mr 63,000) each of these containing three cysteines (residues 255, 512 and 519 in the amino acid sequence). Thiol-specific probes were used to label these cysteines and study the resulting effect of the modification on the kinetic parameters of both the ATP/PPi exchange and tRNA aminoacylation reactions. Using the classical techniques of protein chemistry it was shown that none of the three cysteines was labelled with iodoacetic acid, whilst N-ethylmaleimide and 5,5'-dithiobis(2-nitrobenzoate) reacted with Cys512 and Cys255, respectively. Only the latter modification was accompanied by a decrease in the rates of both enzyme activities whilst the Km values for the various substrates remained unaffected. Site-directed mutagenesis was also used to replace each of the three cysteines by other residues, either individually or simultaneously. For these experiments the enzyme was expressed in Escherichia coli using an expression vector bearing the structural gene in which the first 13 codons were replaced by the first 14 of the CII lambda gene. The resulting substitution in the amino-terminal part of the expressed enzyme had no effect on the kinetic parameters, compared to those of the enzyme purified from S. cerevisiae. Taking into account the consequences of such substitutions, as well as those of chemical modifications on the two reactions catalysed by the enzyme. ATP/PPi exchange and tRNA aminoacylation, it could be concluded that none of these three cysteines plays any essential role in either substrate binding or catalysis.
Collapse
Affiliation(s)
- D Kern
- Laboratoire de Biochmie, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | |
Collapse
|
20
|
Perret V, Florentz C, Giegé R. Efficient aminoacylation of a yeast tRNA(Asp) transcript with a 5' extension. FEBS Lett 1990; 270:4-8. [PMID: 2226785 DOI: 10.1016/0014-5793(90)81221-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A yeast aspartic acid tRNA with a 5' extension of 14 nucleotides was obtained by in vitro transcription with T7 DNA dependent RNA polymerase. This transcript, called extended tRNA(Asp) transcript, retains its aspartylation capacity with the same Km and only three times reduced kcat values as compared to those measured for canonical tRNA(Asp). This result indicates that the 5' extension of the amino acid acceptor stem of tRNA(Asp) does not interfere with recognition by aspartyl-tRNA synthetase. However, in contrast to the wild-type tRNA(Asp) transcript, the 5' extended molecule presents a reduced capacity to be mischarged by arginyl-tRNA synthetase, suggesting the existence of different structural requirements in aspartyl- and arginyl-tRNA synthetases for tRNA(Asp) recognition.
Collapse
Affiliation(s)
- V Perret
- Laboratoire de Biochimie, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | |
Collapse
|
21
|
Perret V, Garcia A, Grosjean H, Ebel JP, Florentz C, Giegé R. Relaxation of a transfer RNA specificity by removal of modified nucleotides. Nature 1990; 344:787-9. [PMID: 2330033 DOI: 10.1038/344787a0] [Citation(s) in RCA: 180] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The molecular recognition of specific transfer RNAs by the appropriate aminoacyl-tRNA synthetase is an important step in determining the accuracy of translation of the genetic message from nucleic acids into proteins. Recent studies using variant tRNAs with specific sequence modifications have indicated particular regions that determine their identity. Here we consider whether the base modifications commonly found in tRNAs contribute to their identity. Although unmodified tRNA(Asp) is charged with aspartate as efficiently as the modified native tRNA, it is mischarged with arginine with considerably increased efficiency. Our results indicate that post-transcriptional modification of tRNAs introduces structural 'anti-determinants', restricting the efficiency with which the tRNAs are charged with inappropriate amino acids.
Collapse
MESH Headings
- Arginine/metabolism
- Arginine-tRNA Ligase/metabolism
- Aspartate-tRNA Ligase/metabolism
- Aspartic Acid/metabolism
- Base Sequence
- Kinetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer, Amino Acid-Specific/metabolism
- RNA, Transfer, Arg
- RNA, Transfer, Asp/genetics
- RNA, Transfer, Asp/metabolism
- Structure-Activity Relationship
- Transcription, Genetic
Collapse
Affiliation(s)
- V Perret
- Institut de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
22
|
Lorber B, Bishop JB, DeLucas LJ. Purification of octyl beta-D-glucopyranoside and re-estimation of its micellar size. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1023:254-65. [PMID: 2328249 DOI: 10.1016/0005-2736(90)90421-j] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The commercial non-ionic detergent octyl beta-D-glucopyranoside is often contaminated by significant amounts of UV absorbing and/or ionic compounds that can associate with membrane proteins. Such impurities can be monitored by several techniques (i.e., spectrophotometry, size exclusion chromatography, and pH, conductivity, and surface tension measurements) and can be removed using mixed-bed ion exchange chromatography. High performance size exclusion chromatography, dynamic light scattering, and ultracentrifugation have been used to re-estimate the size of micelles of octyl beta-D-glucopyranoside since previously published data varied over a wide range. Aggregation numbers were 27 to 100 for micellar molecular weights 8000 to 29,000. Direct physical methods that do not perturbate the sample indicated a large size for the micelles (hydrodynamic radius 23 +/- 3 A; Mr 22,000 +/- 3000; aggregation number 75 +/- 10 for a 34 mM aqueous solution). In contrast the chromatographic micellar size appeared to be smaller (hydrodynamic radius 15 +/- 1 A; Mr 8000 +/- 1000; aggregation number 27). This underestimation may be the result of adsorption and/or alteration of the micelles.
Collapse
Affiliation(s)
- B Lorber
- Center for Macromolecular Crystallography, University of Alabama, Birmingham
| | | | | |
Collapse
|
23
|
Dock-Bregeon AC, Garcia A, Giegé R, Moras D. The contacts of yeast tRNA(Ser) with seryl-tRNA synthetase studied by footprinting experiments. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 188:283-90. [PMID: 2180700 DOI: 10.1111/j.1432-1033.1990.tb15401.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Yeast tRNA(Ser) is a member of the class II tRNAs, whose characteristic is the presence of an extended variable loop. This additional structural feature raises questions about the recognition of these class II tRNAs by their cognate synthetase and the possibility of the involvement of the extra arm in the recognition process. A footprinting study of yeast tRNA(Ser) complexed with its cognate synthetase, yeast seryl-tRNA synthetase (an alpha 2 dimer), was undertaken. Chemical (ethylnitrosourea) and enzymatic (nucleases S1 and V1) probes were used in the experiments. A map of the contact points between the tRNA and the synthetase was established and results were analyzed with respect to a three-dimensional model of yeast tRNA(Ser). Regions in close vicinity with the synthetase are clustered on one face of tRNA. The extra arm, which is strongly protected from chemical modifications, appears as an essential part of the contact area. The anticodon triplet and a large part of the anticodon arm are, in contrast, still accessible to the probes when the complex is formed. These results are discussed in the context of the recognition of tRNAs in the aminoacylation reaction.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/antagonists & inhibitors
- Anticodon
- Autoradiography
- Base Sequence
- Electrophoresis, Polyacrylamide Gel
- Endoribonucleases
- Ethylnitrosourea
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Peptide Mapping
- RNA, Transfer, Amino Acyl/analysis
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Serine-tRNA Ligase/analysis
- Serine-tRNA Ligase/antagonists & inhibitors
- Single-Strand Specific DNA and RNA Endonucleases
Collapse
Affiliation(s)
- A C Dock-Bregeon
- Laboratoires de Biochimie et de Cristallographie, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | |
Collapse
|
24
|
Garcia A, Giegé R, Behr JP. New photoactivatable structural and affinity probes of RNAs: specific features and applications for mapping of spermine binding sites in yeast tRNA(Asp) and interaction of this tRNA with yeast aspartyl-tRNA synthetase. Nucleic Acids Res 1990; 18:89-95. [PMID: 2408010 PMCID: PMC330207 DOI: 10.1093/nar/18.1.89] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aryldiazonium salts are shown to be useful as phototriggered structural probes for RNA mapping as well as for footprinting of RNA/protein interaction. In particular the yeast tRNA(Asp)/aspartyl-tRNA synthetase complex is shown to involve the variable loop face and the concave side of the L-shaped nucleic acid bound to a lipophilic area of the enzyme. When chemically linked to spermine, the photoactive group cleaves RNA at polyamine binding sites; 3-4 spermines have been located in the tRNA(Asp), stabilizing the central part of the molecule in regions where two ribose-phosphate strands are close to each other.
Collapse
Affiliation(s)
- A Garcia
- Laboratoire de Biochimie, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | |
Collapse
|
25
|
Prevost G, Eriani G, Kern D, Dirheimer G, Gangloff J. Study of the arrangement of the functional domains along the yeast cytoplasmic aspartyl-tRNA synthetase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 180:351-8. [PMID: 2647492 DOI: 10.1111/j.1432-1033.1989.tb14655.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aspartyl-tRNA synthetase from yeast (AspRS) was screened for functional domains by measuring the effect of two types of amino acid mutations on its catalytic properties: (a) insertion of a dipeptide or a tetrapeptide along the polypeptide chain, (b) deletion of various lengths from the enzyme C-terminal. It was shown that insertion mutations significantly affect the kinetic properties of AspRS only when occurring in the second quarter of the molecule and the two centrally located mutations even inactivate the enzyme completely. Analysis of kinetic data strongly suggests that, in fact, all the observed activity modifications result from alteration of the activation reaction rate constant, kappa cat only. This led to the conclusion that the domain involved in aspartic acid activation should be located in the second quarter of the molecule. Furthermore, a deletion mutant with a modification of the last five amino acid residues was isolated. This mutant is fully active in the activation step, but has lost 80% of the wild-type aminoacylation activity. This involvement of the C-terminus in acylation implies that it has to be folded towards strategic regions of the enzyme, thus favouring conformations required for catalysis or maintaining the tRNA in a functional position.
Collapse
Affiliation(s)
- G Prevost
- Institut de Biologie Moléculaire et Cellulaire du CNRS et Université Louis Pasteur, Strasbourg, France
| | | | | | | | | |
Collapse
|
26
|
Theobald A, Springer M, Grunberg-Manago M, Ebel JP, Giege R. Tertiary structure of Escherichia coli tRNA(3Thr) in solution and interaction of this tRNA with the cognate threonyl-tRNA synthetase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 175:511-24. [PMID: 2457500 DOI: 10.1111/j.1432-1033.1988.tb14223.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The solution structure of Escherichia coli tRNA(3Thr) (anticodon GGU) and the residues of this tRNA in contact with the alpha 2 dimeric threonyl-tRNA synthetase were studied by chemical and enzymatic footprinting experiments. Alkylation of phosphodiester bonds by ethylnitrosourea and of N-7 positions in guanosines and N-3 positions in cytidines by dimethyl sulphate as well as carbethoxylation of N-7 positions in adenosines by diethyl pyrocarbonate were conducted on different conformers of tRNA(3Thr). The enzymatic structural probes were nuclease S1 and the cobra venom ribonuclease. Results will be compared to those of three other tRNAs, tRNA(Asp), tRNA(Phe) and tRNA(Trp), already mapped with these probes. The reactivity of phosphates towards ethylnitrosourea of the unfolded tRNA was compared to that of the native molecule. The alkylation pattern of tRNA(3Thr) shows some similarities to that of yeast tRNA(Phe) and mammalian tRNA(Trp), especially in the D-arm (positions 19 and 24) and with tRNA(Trp), at position 50, the junction between the variable region and the T-stem. In the T-loop, tRNA(3Thr), similarly to the three other tRNAs, shows protections against alkylation at phosphates 59 and 60. However, tRNA(3Thr) is unique as far as very strong protections are also found for phosphates 55 to 58 in the T-loop. Compared with yeast tRNA(Asp), the main differences in reactivity concern phosphates 19, 24 and 50. Mapping of bases with dimethyl sulphate and diethyl pyrocarbonate reveal conformational similarities with yeast tRNA(Phe). A striking conformational feature of tRNA(3Thr) is found in the 3'-side of its anticodon stem, where G40, surrounded by two G residues, is alkylated under native conditions, in contrast to other G residues in stem regions of tRNAs which are unreactive when sandwiched between two purines. This data is indicative of a perturbed helical conformation in the anticodon stem at the level of the 30-40 base pairs. Footprinting experiments, with chemical and enzymatic probes, on the tRNA complexed with its cognate threonyl-tRNA synthetase indicate significant protections in the anticodon stem and loop region, in the extra-loop, and in the amino acid accepting region. The involvement of the anticodon of tRNA(3Thr) in the recognition process with threonyl-tRNA synthetase was demonstrated by nuclease S1 mapping and by the protection of G34 and G35 against alkylation by dimethyl sulphate. These data are discussed in the light of the tRNA/synthetase recognition problem and of the structural and functional properties of the tRNA-like structure present in the operator region of the thrS mRNA.
Collapse
Affiliation(s)
- A Theobald
- Institut de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | |
Collapse
|
27
|
Lorber B, Mejdoub H, Reinbolt J, Boulanger Y, Giegé R. Properties of N-terminal truncated yeast aspartyl-tRNA synthetase and structural characteristics of the cleaved domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 174:155-61. [PMID: 3286258 DOI: 10.1111/j.1432-1033.1988.tb14076.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cytoplasmic aspartyl-tRNA synthetase from Saccharomyces cerevisiae is a dimer made up of identical subunits of Mr 64,000 as shown by biochemical and crystallographic analyses. Previous studies have emphasized the high sensitivity of the amino-terminal region (residues 1-32) to proteolytic enzymes. This work reports the results of limited tryptic or chymotryptic digestion of the purified enzyme which gives rise to a truncated species that has lost the first 50-64 residues with full retention of both the activity and the dimeric structure. In contrast the larger tryptic fragment is distinguished from the whole enzyme by its weaker retention on heparin-substituted agarose gels. The cleaved N-terminal part presents peculiar structural features, such as a high content in lysine residues arranged in a palindromic fashion. The properties of the trypsin-modified enzyme and of the cleaved amino-terminal region are discussed in relation to the known structural characteristics of aspartyl-tRNA synthetase and of other eukaryotic aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- B Lorber
- Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | |
Collapse
|
28
|
Théobald A, Kern D, Giegé R. Non-essential role of lysine residues for the catalytic activities of aspartyl-tRNA synthetase and comparison with other aminoacyl-tRNA synthetases. Biochimie 1988; 70:205-13. [PMID: 3134944 DOI: 10.1016/0300-9084(88)90062-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Essential lysine residues were sought in the catalytic site of baker's yeast aspartyl-tRNA synthetase (an alpha 2 dimer of Mr 125,000) using affinity labeling methods and periodate-oxidized adenosine, ATP, and tRNA(Asp). It is shown that the number of periodate-oxidized derivatives which can be bound to the synthetase via Schiff's base formation with epsilon-NH2 groups of lysine residues exceeds the stoichiometry of specific substrate binding. Furthermore, it is found that the enzymatic activities are not completely abolished, even for high incorporation levels of the modified substrates. The tRNA(Asp) aminoacylation reaction is more sensitive to labeling than is the ATP-PPi exchange one; for enzyme preparations modified with oxidized adenosine or ATP this activity remains unaltered. These results demonstrate the absence of a specific lysine residue directly involved in the catalytic activities of yeast aspartyl-tRNA synthetase. Comparative labeling experiments with oxidized ATP were run with several other aminoacyl-tRNA synthetases. Residual ATP-PPi exchange and tRNA aminoacylation activities measured in each case on the modified synthetases reveal different behaviors of these enzymes when compared to that of aspartyl-tRNA synthetase. When tested under identical experimental conditions, pure isoleucyl-, methionyl-, threonyl- and valyl-tRNA synthetases from E. coli can be completely inactivated for their catalytic activities; for E. coli alanyl-tRNA synthetase only the tRNA charging activity is affected, whereas yeast valyl-tRNA synthetase is only partly inactivated. The structural significance of these experiments and the occurrence of essential lysine residues in aminoacyl-tRNA synthetases are discussed.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Théobald
- Laboratoire de Biochimie, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | |
Collapse
|
29
|
Podjarny A, Rees B, Thierry JC, Cavarelli J, Jésior JC, Roth M, Lewitt-Bentley A, Kahn R, Lorber B, Ebel JP. Yeast tRNA(Asp)-aspartyl-tRNA synthetase complex: low resolution crystal structure. J Biomol Struct Dyn 1987; 5:187-98. [PMID: 3078234 DOI: 10.1080/07391102.1987.10506389] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Yeast aspartyl-tRNA synthetase, a dimer of molecular weight 125,000, and two molecules of its cognate tRNA (Mr = 24160) cocrystallize in the cubic space group I432 (a = 354 A). The crystal structure was solved to low resolution using neutron and X-ray diffraction data. Neutron single crystal diffraction data were collected in five solvents differing by their D2O content in order to use the contrast variation method to distinguish between the protein and tRNA. The synthetase was first located at 40 A resolution using the 65% D2O neutron data (tRNA matched) tRNA molecules were found at 20 A resolution using both neutron and X-ray data. The resulting model was refined against 10 A resolution X-ray data, using density modification and least-squares refinement of the tRNA positions. The crystal structure solved without a priori phase knowledge, was confirmed later by isomorphous replacement. The molecular model of the complex is in good agreement with results obtained in solution by probing the protected part of the tRNA by chemical reagents.
Collapse
Affiliation(s)
- A Podjarny
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lorber B, Kern D, Mejdoub H, Boulanger Y, Reinbolt J, Giege R. The microheterogeneity of the crystallizable yeast cytoplasmic aspartyl-tRNA synthetase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 165:409-17. [PMID: 3297688 DOI: 10.1111/j.1432-1033.1987.tb11454.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Yeast aspartyl-tRNA synthetase is a dimeric enzyme (alpha 2, Mr 125,000) which can be crystallized either alone or complexed with tRNAAsp. When analyzed by electrophoretic methods, the pure enzyme presents structural heterogeneities even when recovered from crystals. Up to three enzyme populations could be identified by polyacrylamide gel electrophoresis and more than ten by isoelectric focusing. They have similar molecular masses and mainly differ in their charge. All are fully active. This microheterogeneity is also revealed by ion-exchange chromatography and chromatofocusing. Several levels of heterogeneity have been defined. A first type, which is reversible, is linked to redox effects and/or to conformational states of the protein. A second one, revealed by immunological methods, is generated by partial and differential proteolysis occurring during enzyme purification from yeast cells harvested in growth phase. As demonstrated by end-group analysis, the fragmentation concerns exclusively the N-terminal end of the enzyme. The main cleavage points are Gln-19, Val-20 and Gly-26. Six minor cuts are observed between positions 14 and 33. The present data are discussed in the perspective of the crystallographic studies on aspartyl-tRNA synthetase.
Collapse
|
31
|
Sellami M, Fasiolo F, Dirheimer G, Ebel JP, Gangloff J. Nucleotide sequence of the gene coding for yeast cytoplasmic aspartyl-tRNA synthetase (APS); mapping of the 5' and 3' termini of AspRS mRNA. Nucleic Acids Res 1986; 14:1657-66. [PMID: 3513127 PMCID: PMC339550 DOI: 10.1093/nar/14.4.1657] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A 3.8 Kb DNA fragment, which contains the structural gene of aspartyl-tRNA synthetase (AspRS) and its flanking regions, has been fully sequenced by the combined M13/dideoxy chain terminator method. From the single open reading frame of correct length (1671 bp) we deduced an amino acid sequence consistent with that of several peptides of AspRS. No significant internal sequence repeats were observed in the primary structure of the protein. The AspRS gene (APS) has a codon usage pattern typical of non abundant proteins. S1 nuclease analysis of APS mRNA showed a major start 17 bases downstream from a "TATA box" and stops near an RNA polymerase terminator sequence.
Collapse
|
32
|
Arafat W, Kern D, Dirheimer G. Inhibition of aminoacyl-tRNA synthetases by the mycotoxin patulin. Chem Biol Interact 1985; 56:333-49. [PMID: 3907866 DOI: 10.1016/0009-2797(85)90015-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effect of patulin on tRNA aminoacylation has been determined. This mycotoxin inhibits the aminoacylation process by irreversibly inactivating aminoacyl-tRNA synthetases. At neutral and alkaline pH-values, the inactivation occurs mainly by modification of essential thiol groups of the protein, whereas at acidic pH, where the effect is the most pronounced, the modification of other amino acid residues cannot be excluded.
Collapse
|
33
|
Romby P, Moras D, Bergdoll M, Dumas P, Vlassov VV, Westhof E, Ebel JP, Giegé R. Yeast tRNAAsp tertiary structure in solution and areas of interaction of the tRNA with aspartyl-tRNA synthetase. A comparative study of the yeast phenylalanine system by phosphate alkylation experiments with ethylnitrosourea. J Mol Biol 1985; 184:455-71. [PMID: 3900415 DOI: 10.1016/0022-2836(85)90294-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ethylnitrosourea is an alkylating reagent preferentially modifying phosphate groups in nucleic acids. It was used to monitor the tertiary structure, in solution, of yeast tRNAAsp and to determine those phosphate groups in contact with the cognate aspartyl-tRNA synthetase. Experiments involve 3' or 5'-end-labelled tRNA molecules, low yield modification of the free or complexed nucleic acid and specific splitting at the modified phosphate groups. The resulting end-labelled oligonucleotides are resolved on polyacrylamide sequencing gels and data analysed by autoradiography and densitometry. Experiments were conducted in parallel on yeast tRNAAsp and on tRNAPhe. In that way it was possible to compare the solution structure of two elongator tRNAs and to interpret the modification data using the known crystal structures of both tRNAs. Mapping of the phosphates in free tRNAAsp and tRNAPhe allowed the detection of differential reactivities for phosphates 8, 18, 19, 20, 22, 23, 24 and 49: phosphates 18, 19, 23, 24 and 49 are more reactive in tRNAAsp, while phosphates 8, 20 and 22 are more reactive in tRNAPhe. All other phosphates display similar reactivities in both tRNAs, in particular phosphate 60 in the T-loop, which is strongly protected. Most of these data are explained by the crystal structures of the tRNAs. Thermal transitions in tRNAAsp could be followed by chemical modifications of phosphates. Results indicate that the D-arm is more flexible than the T-loop. The phosphates in yeast tRNAAsp in contact with aspartyl-tRNA synthetase are essentially contained in three continuous stretches, including those at the corner of the amino acid accepting and D-arm, at the 5' side of the acceptor stem and in the variable loop. When represented in the three-dimensional structure of the tRNAAsp, it clearly appears that one side of the L-shaped tRNA molecule, that comprising the variable loop, is in contact with aspartyl-tRNA synthetase. In yeast tRNAPhe interacting with phenylalanyl-tRNA synthetase, the distribution of protected phosphates is different, although phosphates in the anticodon stem and variable loop are involved in both systems. With tRNAPhe, the data cannot be accommodated by the interaction model found for tRNAAsp, but they are consistent with the diagonal side model proposed by Rich & Schimmel (1977). The existence of different interaction schemes between tRNAs and aminoacyl-tRNA synthetases, correlated with the oligomeric structure of the enzyme, is proposed.
Collapse
|
34
|
Lorber B, Giegé R. High-performance liquid chromatographic analysis of crystals of tRNA, aminoacyl-tRNA synthetase, and their complex. Anal Biochem 1985; 146:402-4. [PMID: 3896023 DOI: 10.1016/0003-2697(85)90558-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
High-performance liquid chromatography on an ion exchanger column was successfully used for a rapid biochemical analysis of crystals of yeast tRNAAsp and aspartyl-tRNA synthetase as well as cocrystals formed by the synthetase and the tRNA.
Collapse
|
35
|
Sellami M, Prévost G, Bonnet J, Dirheimer G, Gangloff J. Isolation and characterization of the yeast aspartyl-tRNA synthetase gene. Gene X 1985; 40:349-52. [PMID: 3007301 DOI: 10.1016/0378-1119(85)90060-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A yeast genomic library in Escherichia coli, constructed by insertion of Sau3A restriction fragments into the hybrid Saccharomyces cerevisiae-E. coli plasmid pFL1, was screened by a radioimmunoassay (RIA) for colonies expressing yeast aspartyl-tRNA synthetase (AspRS). Four clones were isolated by this technique. Data obtained by Southern and restriction analysis of the inserts showed a common 3.8-kb BamHI restriction fragment which, when inserted into the plasmid pFL1, gave a positive RIA. Several controls showed that this 3.8-kb insert codes for the entire AspRS: (i) S. cerevisiae transformed by the PFL1 plasmid carrying the 3.8-kb fragment overproduces AspRS activity by a factor of ten compared to the wild-type yeast strain; and (ii) a new protein with electrophoretic behaviour similar to AspRS and immuno-reactive toward anti-AspRS appears in crude extracts of transformed yeast and E. coli.
Collapse
|
36
|
Deutscher MP. The eucaryotic aminoacyl-tRNA synthetase complex: suggestions for its structure and function. J Cell Biol 1984; 99:373-7. [PMID: 6746733 PMCID: PMC2113280 DOI: 10.1083/jcb.99.2.373] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aminoacyl-tRNA synthetases from eucaryotic cells generally are isolated as high molecular weight complexes comprised of multiple synthetase activities, and often containing other components as well. A model is proposed for the synthetase complex in which hydrophobic extensions on the proteins serve to maintain them in their high molecular weight form, but are not needed for catalytic activity. The structural similarity of these enzymes to certain membrane-bound proteins, and its implications for synthetase localization and function in vivo, are discussed.
Collapse
|