1
|
Munder MC, Midtvedt D, Franzmann T, Nüske E, Otto O, Herbig M, Ulbricht E, Müller P, Taubenberger A, Maharana S, Malinovska L, Richter D, Guck J, Zaburdaev V, Alberti S. A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy. eLife 2016; 5. [PMID: 27003292 PMCID: PMC4850707 DOI: 10.7554/elife.09347] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 02/13/2016] [Indexed: 01/19/2023] Open
Abstract
Cells can enter into a dormant state when faced with unfavorable conditions. However, how cells enter into and recover from this state is still poorly understood. Here, we study dormancy in different eukaryotic organisms and find it to be associated with a significant decrease in the mobility of organelles and foreign tracer particles. We show that this reduced mobility is caused by an influx of protons and a marked acidification of the cytoplasm, which leads to widespread macromolecular assembly of proteins and triggers a transition of the cytoplasm to a solid-like state with increased mechanical stability. We further demonstrate that this transition is required for cellular survival under conditions of starvation. Our findings have broad implications for understanding alternative physiological states, such as quiescence and dormancy, and create a new view of the cytoplasm as an adaptable fluid that can reversibly transition into a protective solid-like state.
Collapse
Affiliation(s)
| | - Daniel Midtvedt
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Titus Franzmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Nüske
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Oliver Otto
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Maik Herbig
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Elke Ulbricht
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Paul Müller
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Anna Taubenberger
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Shovamayee Maharana
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Liliana Malinovska
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Doris Richter
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Vasily Zaburdaev
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
2
|
Abstract
DGKs (diacylglycerol kinases) are members of a unique and conserved family of intracellular lipid kinases that phosphorylate DAG (diacylglycerol), catalysing its conversion into PA (phosphatidic acid). This reaction leads to attenuation of DAG levels in the cell membrane, regulating a host of intracellular signalling proteins that have evolved the ability to bind this lipid. The product of the DGK reaction, PA, is also linked to the regulation of diverse functions, including cell growth, membrane trafficking, differentiation and migration. In multicellular eukaryotes, DGKs provide a link between lipid metabolism and signalling. Genetic experiments in Caenorhabditis elegans, Drosophila melanogaster and mice have started to unveil the role of members of this protein family as modulators of receptor-dependent responses in processes such as synaptic transmission and photoreceptor transduction, as well as acquired and innate immune responses. Recent discoveries provide new insights into the complex mechanisms controlling DGK activation and their participation in receptor-regulated processes. After more than 50 years of intense research, the DGK pathway emerges as a key player in the regulation of cell responses, offering new possibilities of therapeutic intervention in human pathologies, including cancer, heart disease, diabetes, brain afflictions and immune dysfunctions.
Collapse
|
3
|
Bregoli L, Baldassare JJ, Raben DM. Nuclear diacylglycerol kinase-theta is activated in response to alpha-thrombin. J Biol Chem 2001; 276:23288-95. [PMID: 11309392 DOI: 10.1074/jbc.m101501200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Currently, there is substantial evidence that nuclear lipid metabolism plays a critical role in a number of signal transduction cascades. Previous work from our laboratory showed that stimulation of quiescent fibroblasts with alpha-thrombin leads to the production of two lipid second messengers in the nucleus: an increase in nuclear diacylglycerol mass and an activation of phospholipase D, which catalyzes the hydrolysis of phosphatidylcholine to generate phosphatidic acid. Diacylglycerol kinase (DGK) catalyzes the conversion of diacylglycerol to phosphatidic acid, making it an attractive candidate for a signal transduction component. There is substantial evidence that this activity is indeed regulated in a number of signaling cascades (reviewed by van Blitterswijk, W. J., and Houssa, B. (1999) Chem. Phys. Lipids 98, 95-108). In this report, we show that the addition of alpha-thrombin to quiescent IIC9 fibroblasts results in an increase in nuclear DGK activity. The examination of nuclei isolated from quiescent IIC9 cells indicates that DGK-theta and DGK-delta are both present. We took advantage of the previous observations that phosphatidylserine inhibits DGK-delta (reviewed by Sakane, F., Imai, S., Kai, M., Wada, I., and Kanoh, H. (1996) J. Biol. Chem. 271, 8394-8401), and constitutively active RhoA inhibits DGK-theta (reviewed by Houssa, B., de Widt, J., Kranenburg, O., Moolenaar, W. H., and van Blitterswijk, W. J. (1999) J. Biol. Chem. 274, 6820-6822) to identify the activity induced by alpha-thrombin. Constitutively active RhoA inhibited the nuclear stimulated activity, whereas phosphatidylserine did not have an inhibitory effect. In addition, a monoclonal anti-DGK-theta antibody inhibited the alpha-thrombin-stimulated nuclear activity in vitro. These results demonstrate that DGK-theta is the isoform responsive to alpha-thrombin stimulation. Western blot and immunofluorescence microscopy analyses showed that alpha-thrombin induced the translocation of DGK-theta to the nucleus, implicating that this translocation is at least partly responsible for the increased nuclear activity. Taken together, these data are the first to demonstrate an agonist-induced activity of nuclear DGK-theta activity and a nuclear localization of DGK-delta.
Collapse
Affiliation(s)
- L Bregoli
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
4
|
Schwandner WR, Jiménez B, Schwartz A, Weijer CJ, Behrens M, Mazón MJ, Fernández-Renart M. Chemotactic stimulation of aggregation-stage Dictyostelium cells induces rapid changes in energy metabolism, as measured by succinic thiokinase phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1176:175-82. [PMID: 8384004 DOI: 10.1016/0167-4889(93)90194-t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In crude mitochondrial fractions of the cellular slime mold Dictyostelium discoideum, a 38-kDa protein can be detected in phosphorylation assays under autophosphorylation conditions in SDS polyacrylamide gels. p38 can be phosphorylated in vitro using either ATP or GTP as phosphoryl donors. After stimulation of aggregation competent cells with the chemoattractant cAMP, p38 phosphorylation pattern changes rapidly. Caffeine, a known inhibitor of cAMP relay in D. discoideum inhibits cAMP induced changes in p38 phosphorylation. The rapid changes in p38 phosphorylation after cAMP stimulation reflect changes in energy metabolism and these changes are most likely mediated by changes in internal calcium concentrations. The mitochondrial localization and other data presented on the characterization of this protein led us to the conclusion that p38 is the alpha subunit of succinic thiokinase. Data showing a correlation between in-vitro p38 phosphorylation and the metabolic state of the cells at the moment of the cell lysis are included.
Collapse
Affiliation(s)
- W R Schwandner
- Zoologisches Institüt, Ludwig Maximilian Universität München, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
Alonso TS, Bonini de Romanelli IC, Roccamo de Fernández AM, Barrantes FJ. Polyphosphoinositide synthesis and protein phosphorylation in the plasma membrane from full-grown Bufo arenarum oocytes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1992; 102:585-90. [PMID: 1323443 DOI: 10.1016/0305-0491(92)90051-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. Polyphosphoinositide content and phosphorylation of lipids and proteins were analyzed in oocytes of the toad Bufo arenarum Hensel. 2. Plasma membrane-enriched fractions obtained from full-grown, prophase-arrested oocytes incorporated 32P into both phospholipids and proteins after incubation with [gamma-32P]ATP in an Mg(2+)-containing medium. Phosphatidylinositol 4-phosphate (PIP), phosphatidate (PA) and phosphatidylinositol-4,5-bisphosphate (PIP2) were the only labelled lipids. The 32P incorporation depended on incubation time, the amount of protein, and the ATP concentration. 3. Autoradiography of polyacrylamide gel electropherograms and scintillation counting showed that the radioactivity was mainly associated with a group of membrane proteins having an M(r) of 87,000. 4. This paper provides evidence for the capacity of prophase-arrested oocytes from Bufo arenarum to synthesize polyphosphoinositides and to phosphorylate distinct membrane proteins.
Collapse
Affiliation(s)
- T S Alonso
- Instituto de Investigaciones Bioquímicas, Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Bahia Blanca, Argentina
| | | | | | | |
Collapse
|
6
|
Lundberg GA, Sommarin M. Diacylglycerol kinase in plasma membranes from wheat. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1123:177-83. [PMID: 1310876 DOI: 10.1016/0005-2760(92)90109-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diacylglycerol kinase activity was demonstrated in highly purified plasma membranes isolated from shoots and roots of dark-grown wheat (Triticum aestivum L.) by aqueous polymer two-phase partitioning. The active site of the diacylglycerol kinase was localized to the inner cytoplasmic surface of the plasma membrane using isolated inside-out and right-side-out plasma membrane vesicles from roots. The enzyme activity in plasma membrane vesicles from shoots showed a broad pH optimum around pH 7. The reaction was Mg2+ and ATP dependent, and maximal activity was observed around 0.5 mM ATP and 3 mM MgCl2. The Mg2+ requirement could be substituted only partially by Mn2+ and not at all by Ca2+. The phosphorylation of endogenous diacylglycerol was strongly inhibited by detergents indicating an extreme dependence of the lipid environment. Inositol phospholipids stimulated the activity of diacylglycerol kinase in plasma membranes from shoots and roots, whereas the activity was inhibited by R59022, a putative inhibitor of several diacylglycerol kinase isoenzymes involved in uncoupling diacylglycerol activation of mammalian protein kinase C.
Collapse
Affiliation(s)
- G A Lundberg
- Department of Plant Biochemistry, University of Lund, Sweden
| | | |
Collapse
|
7
|
|
8
|
Yada Y, Ozeki T, Kanoh H, Nozawa Y. Purification and characterization of cytosolic diacylglycerol kinases of human platelets. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30649-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Abstract
Diacylglycerol kinase (DGK) plays a central role in the metabolism of diacylglycerol released as a second messenger in agonist-stimulated cells. The major purified form of the enzyme (80 kDa DGK) is highly abundant in lymphocyte cytosol and may become membrane-associated via phosphorylation by protein kinase C. In addition, there are several kinase subspecies immunologically distinct from the 80 kDa enzyme, which differ markedly in their responses to several compounds such as sphingosine and R59022. Thus, further work on each enzyme species is needed to define the function of DGK in stimulated cells.
Collapse
Affiliation(s)
- H Kanoh
- Department of Biochemistry, Sapporo Medical College, Japan
| | | | | |
Collapse
|
10
|
Jiménez B, Pestaña A, Fernandez-Renart M. A phospholipid-stimulated protein kinase from Dictyostelium discoideum. Biochem J 1989; 260:557-61. [PMID: 2764888 PMCID: PMC1138704 DOI: 10.1042/bj2600557] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A protein kinase with unusual characteristics has been found in Dictyostelium discoideum. This kinase can use histone H1 as exogenous substrate, and the activity is stimulated by phospholipids, but not by Ca2+. This enzyme has been partially purified by using chromatography on DEAE-cellulose DE-52, spermine-agarose and phosphatidylserine-polyacrylamide. The protein kinase activity is very labile, even in the presence of protease inhibitors, making further purification difficult. In the activity-containing fractions, an endogenous protein of 140 kDa is labelled in vitro with [gamma-32P]ATP under conditions in which intramolecular rather than intermolecular reactions are favoured. This protein is labelled only in the presence of phospholipids, but not of Ca2+. We propose that the 140 kDa phosphoprotein might be the autophosphorylated enzyme.
Collapse
Affiliation(s)
- B Jiménez
- Instituto de Investigaciones Biomedicas del C.S.I.C., Departamento de Bioquimica de la Facultad de Medicina de la U.A.M., Madrid, Spain
| | | | | |
Collapse
|
11
|
Abstract
The previous demonstration that incubation of brain slices with [32P]phosphate brings about rapid labeling of phosphatidic acid in myelin suggests that the enzyme involved should be present in this specialized membrane. DAG kinase (ATP:1,2-diacyglycerol 3-phosphotransferase, E.C. 2.7.1.107) is present in rat brain homogenate at a specific activity of 2.5 nmol phosphatidic acid formed/min/mg protein, while highly purified myelin had a much lower specific activity (0.29 nmol/min/mg protein). Nevertheless, the enzyme appears to be intrinsic to this membrane since it can not be removed by washing with a variety of detergents or chelating agents, and it could not be accounted for as contamination by another subcellular fraction. Production of endogenous, membrane-associated, diacylglycerol (DAG) by PLC (phospholipase C) treatment brought about translocation from soluble to particulate fractions, including myelin. Another level of control of activity involves inactivation by phosphorylation; a 10 min incubation of brain homogenate with ATP resulted in a large decrease in DAG kinase activity in soluble, particulate and myelin fractions.
Collapse
Affiliation(s)
- D W Kahn
- Department of Biochemistry and Nutrition, University of North Carolina, Chapel Hill 27599-7250
| | | |
Collapse
|
12
|
Van Haastert PJ, De Vries MJ, Penning LC, Roovers E, Van der Kaay J, Erneux C, Van Lookeren Campagne MM. Chemoattractant and guanosine 5'-[gamma-thio]triphosphate induce the accumulation of inositol 1,4,5-trisphosphate in Dictyostelium cells that are labelled with [3H]inositol by electroporation. Biochem J 1989; 258:577-86. [PMID: 2539811 PMCID: PMC1138400 DOI: 10.1042/bj2580577] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The analysis of the inositol cycle in Dictyostelium discoideum cells is complicated by the limited uptake of [3H]inositol (0.2% of the applied radioactivity in 6 h), and by the conversion of [3H]inositol into water-soluble inositol metabolites that are eluted near the position of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] on anion-exchange h.p.l.c. columns. The uptake was improved to 2.5% by electroporation of cells in the presence of [3H]inositol; electroporation was optimal at two 210 microseconds pulses of 7 kV. Cells remained viable and responsive to chemotactic signals after electroporation. The intracellular [3H]inositol was rapidly metabolized to phosphatidylinositol and more slowly to phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. More than 85% of the radioactivity in the water-soluble extract that was eluted on Dowex columns as Ins(1,4,5)P3 did not co-elute with authentic [32P]Ins(1,4,5)P3 on h.p.l.c. columns. Chromatography of the extract by ion-pair reversed-phase h.p.l.c. provided a good separation of the polar inositol polyphosphates. Cellular [3H]Ins(1,4,5)P3 was identified by (a) co-elution with authentic [32P]Ins(1,4,5)P3 and (b) degradation by a partially purified Ins(1,4,5)P3 5-phosphatase from rat brain. The chemoattractant cyclic AMP and the non-hydrolysable analogue guanosine 5'-[gamma-thio]triphosphate induced a transient accumulation of radioactivity in Ins(1,4,5)P3; we did not detect radioactivity in inositol 1,3,4-trisphosphate or inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. In vitro, Ins(1,4,5)P3 was metabolized to inositol 1,4- and 4,5-bisphosphate, but not to Ins(1,3,4,5)P4 or another tetrakisphosphate isomer. We conclude that Dictyostelium has a receptor- and G-protein-stimulated inositol cycle which is basically identical with that in mammalian cells, but the metabolism of Ins(1,4,5)P3 is probably different.
Collapse
Affiliation(s)
- P J Van Haastert
- Cell Biology and Genetics Unit, University of Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
13
|
Kanoh H, Yamada K, Sakane F, Imaizumi T. Phosphorylation of diacylglycerol kinase in vitro by protein kinase C. Biochem J 1989; 258:455-62. [PMID: 2539807 PMCID: PMC1138383 DOI: 10.1042/bj2580455] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We investigated the effects of enzyme phosphorylation in vitro on the properties of diacylglycerol kinase. Diacylglycerol kinase and protein kinase C, both present as Mr-80,000 proteins, were highly purified from pig thymus cytosol. Protein kinase C phosphorylated diacylglycerol kinase (up to 1 mol of 32P/mol of enzyme) much more actively than did cyclic AMP-dependent protein kinase. Phosphorylated and non-phosphorylated diacylglycerol kinase showed a similar pI, approx. 6.8. Diacylglycerol kinase phosphorylated by either protein kinase C or cyclic AMP-dependent protein kinase was almost exclusively associated with phosphatidylserine membranes. In contrast, soluble kinase consisted of the non-phosphorylated form. The catalytic properties of the lipid kinase were not much affected by phosphorylation, although phosphorylation-linked binding with phosphatidylserine vesicles resulted in stabilization of the enzyme activity.
Collapse
Affiliation(s)
- H Kanoh
- Department of Biochemistry, Sapporo Medical College, Japan
| | | | | | | |
Collapse
|
14
|
Yamada K, Sakane F, Kanoh H. Immunoquantitation of 80 kDa diacylglycerol kinase in pig and human lymphocytes and several other cells. FEBS Lett 1989; 244:402-6. [PMID: 2537763 DOI: 10.1016/0014-5793(89)80572-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
80 kDa diacylglycerol kinase (DGK) was immunoquantitated in cell homogenates and subcellular fractions. It was extremely abundant in the cytosol of various lymphocytes and comprised, in the highest case, more than 0.2% of the total soluble protein in T cell-enriched pig splenocytes. The lymphocyte membrane contained less than 10% of the total cellular DGK protein. The content of 80 kDa DGK in the human T cell leukemic cell line, Jurkat (360 ng/mg homogenate protein), was similar to those in pig and human peripheral blood lymphocytes. In contrast, the enzyme level was very low in the human promyeloblastic cell line, HL-60 (less than 10 ng/mg homogenate protein), and was undetectable in human polymorphonuclear leukocytes. These findings indicate that the content of 80 kDa DGK is markedly variable depending on the type of cells, even though all these cells are known to accumulate phosphatidate rapidly upon cell stimulation.
Collapse
Affiliation(s)
- K Yamada
- Department of Biochemistry, Sapporo Medical College, Japan
| | | | | |
Collapse
|
15
|
Van Lookeren Campagne MM, Erneux C, Van Eijk R, Van Haastert PJ. Two dephosphorylation pathways of inositol 1,4,5-trisphosphate in homogenates of the cellular slime mould Dictyostelium discoideum. Biochem J 1988; 254:343-50. [PMID: 2845948 PMCID: PMC1135083 DOI: 10.1042/bj2540343] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dictyostelium discoideum homogenates contain phosphatase activity which rapidly dephosphorylates Ins(1,4,5)P3 (D-myo-inositol 1,4,5-trisphosphate) to Ins (myo-inositol). When assayed in Mg2+, Ins(1,4,5)P3 is dephosphorylated by the soluble Dictyostelium cell fraction to 20% Ins(1,4)P2 (D-myo-inositol 1,4-bisphosphate) and 80% Ins(4,5)P2 (D-myo-inositol 4,5-bisphosphate). In the particulate fraction Ins(1,4,5)P3 5-phosphatase is relatively more active than the Ins(1,4,5)P3 1-phosphatase. CaCl2 can replace MgCl2 only for the Ins(1,4,5)P3 5-phosphatase activity. Ins(1,4)P2 and Ins(4,5)P2 are both further dephosphorylated to Ins4P (D-myo-inositol 4-monophosphate), and ultimately to Ins. Li+ ions inhibit Ins(1,4,5)P3 1-phosphatase, Ins(1,4)P2 1-phosphatase, Ins4P phosphatase and L-Ins1P (L-myo-inositol 1-monophosphate) phosphatase activities; Ins(1,4,5)P3 1-phosphatase is 10-fold more sensitive to Li+ (half-maximal inhibition at about 0.25 mM) than are the other phosphatases (half-maximal inhibition at about 2.5 mM). Ins(1,4,5)P3 5-phosphatase activity is potently inhibited by 2,3-bisphosphoglycerate (half-maximal inhibition at 3 microM). Furthermore, 2,3-bisphosphoglycerate also inhibits dephosphorylation of Ins(4,5)P2. These characteristics point to a number of similarities between Dictyostelium phospho-inositol phosphatases and those from higher organisms. The presence of an hitherto undescribed Ins(1,4,5)P3 1-phosphatase, however, causes the formation of a different inositol bisphosphatase isomer [Ins(4,5)P2] from that found in higher organisms [Ins(1,4)P2]. The high sensitivity of some of these phosphatases for Li+ suggests that they may be the targets for Li+ during the alteration of cell pattern by Li+ in Dictyostelium.
Collapse
|