1
|
Antczak DF, Allen WRT. Placentation in Equids. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2021; 234:91-128. [PMID: 34694479 DOI: 10.1007/978-3-030-77360-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This chapter focuses on the early stages of placental development in horses and their relatives in the genus Equus and highlights unique features of equid reproductive biology. The equine placenta is classified as a noninvasive, epitheliochorial type. However, equids have evolved a minor component of invasive trophoblast, the chorionic girdle and endometrial cups, which links the equine placenta with the highly invasive hemochorial placentae of rodents and, particularly, with the primate placenta. Two types of fetus-to-mother signaling in equine pregnancy are mediated by the invasive equine trophoblast cells. First, endocrinological signaling mediated by equine chorionic gonadotrophin (eCG) drives maternal progesterone production to support the equine conceptus between days 40 and 100 of gestation. Only in primates and equids does the placenta produce a gonadotrophin, but the evolutionary paths taken by these two groups of mammals to produce this placental signal were very different. Second, florid expression of paternal major histocompatibility complex (MHC) class I molecules by invading chorionic girdle cells stimulates strong maternal anti-fetal antibody responses that may play a role in the development of immunological tolerance that protects the conceptus from destruction by the maternal immune system. In humans, invasive extravillous trophoblasts also express MHC class I molecules, but the loci involved, and their likely function, are different from those of the horse. Comparison of the cellular and molecular events in these disparate species provides outstanding examples of convergent evolution and co-option in mammalian pregnancy and highlights how studies of the equine placenta have produced new insights into reproductive strategies.
Collapse
Affiliation(s)
- Douglas F Antczak
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA.
| | - W R Twink Allen
- Sharjah Equine Hospital, Sharjah, United Arab Emirates
- Robinson College, University of Cambridge, Cambridge, UK
- The Paul Mellon Laboratory of Equine Reproduction, 'Brunswick', Newmarket, Suffolk, UK
| |
Collapse
|
2
|
Hong SM, Choi JH, Jo SJ, Min KS, Kim DJ, Lee JM, Kusakabe T. Heterologous Production and Glycosylation of Japanese Eel Follitropin Using Silkworm. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
3
|
Pearl CA, Boime I. Sulfation of LH does not affect intracellular trafficking. Mol Cell Endocrinol 2009; 309:76-81. [PMID: 19647136 PMCID: PMC2720855 DOI: 10.1016/j.mce.2009.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 10/21/2022]
Abstract
LH and FSH are produced by the same gonadotrope cells of the anterior pituitary but differ in their mode of secretion. LH secretion is primarily episodic, or regulated, while FSH secretion is primarily basal, or constitutive. The asparagine (N)-linked oligosaccharides of LH and FSH terminate with sulfate and sialic acid, respectively. TSH also contains sulfated N-linked oligosaccharides and is secreted through the regulated pathway. It has been hypothesized that sulfate plays a role in segregating LH to the regulated pathway. Using a mouse pituitary model, we tested this hypothesis by examining the secretory fate of LH from pituitaries treated with sodium chlorate, a known inhibitor of sulfation. Here we show that mouse LH is sulfated and secreted through the regulated pathway, while FSH is secreted constitutively. LH secretion from chlorate-treated pituitaries, which showed complete inhibition of sulfation, was similar to untreated pituitaries. These data suggest that the metabolic role for sulfated N-linked oligosaccharides is not for intracellular trafficking but for the extracellular bioactivity of LH.
Collapse
Affiliation(s)
- Christopher A Pearl
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | | |
Collapse
|
4
|
de Mestre AM, Miller D, Roberson MS, Liford J, Chizmar LC, McLaughlin KE, Antczak DF. Glial cells missing homologue 1 is induced in differentiating equine chorionic girdle trophoblast cells. Biol Reprod 2008; 80:227-34. [PMID: 18971425 DOI: 10.1095/biolreprod.108.070920] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to identify transcription factors associated with differentiation of the chorionic girdle, the invasive form of equine trophoblast. The expression patterns of five transcription factors were determined on a panel of conceptus tissues from early horse pregnancy. Tissues from Days 15 through 46 were tested. Eomesodermin (EOMES), glial cells missing homologue 1 (GCM1), heart and neural crest derivatives expressed transcript 1 (HAND1), caudal type homeobox 2 (CDX2), and distal-less homeobox 3 (DLX3) were detected in horse trophoblast, but the expression patterns for these genes varied. EOMES had the most restricted distribution, while DLX3 CDX2, and HAND1 were widely expressed. GCM1 seemed to increase in the developing chorionic girdle, and this was confirmed by quantitative RT-PCR assays. GCM1 expression preceded a striking increase in expression of equine chorionic gonadotropin beta (CGB) in the chorionic girdle, and binding sites for GCM1 were discovered in the promoter region of the CGB gene. GCM1, CGB, and CGA mRNA were expressed preferentially in binucleate cells as opposed to uninucleate cells of the chorionic girdle. Based on these findings, it is likely that GCM1 has a role in differentiation and function of the invasive trophoblast of the equine chorionic girdle and endometrial cups. The equine binucleate chorionic girdle (CG) secreting trophoblast shares molecular, morphological, and functional characteristics with human syncytiotrophoblast and represents a model for studies of human placental function.
Collapse
Affiliation(s)
- Amanda M de Mestre
- Baker Institute for Animal Health and Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | | | | | | | |
Collapse
|
5
|
Hervé V, Roy F, Bertin J, Guillou F, Maurel MC. Antiequine chorionic gonadotropin (eCG) antibodies generated in goats treated with eCG for the induction of ovulation modulate the luteinizing hormone and follicle-stimulating hormone bioactivities of eCG differently. Endocrinology 2004; 145:294-303. [PMID: 14525910 DOI: 10.1210/en.2003-0595] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In dairy goats, treatments associating a progestogen and the equine chorionic gonadotropin (eCG) are the easiest way to induce and synchronize estrus and ovulation and to permit artificial insemination (AI) and/or out of season breeding. From the first treatment, the injection of eCG induces, in some females, the production of anti-eCG antibodies (Abs) that will interfere with the effectiveness of subsequent treatments. These anti-eCG Abs delay the preovulatory LH surge and the ovulation time, leading to poor fertility of the treated females. In this study, by in vitro bioassays, we show that anti-eCG Abs can positively or negatively modulate the LH and/or FSH bioactivities of eCG. Moreover, the modulation level of eCG bioactivity does not depend on the anti-eCG Ab affinity for eCG, as shown by surface plasmon resonance technology. The specificity of anti-eCG Abs tested by competitive ELISA highlighted the importance of a glycan environment in the recognition mechanism, especially the sialic acids specific to eCG. The different effects of anti-eCG Abs on eCG bioactivities could be explained by two hypotheses. First, steric hindrance preventing the interaction of eCG with its receptors would explain the inhibitory effect of some anti-eCG Abs; second, a conformational change in eCG by anti-eCG Abs could induce inhibition or potentiation of eCG bioactivities. It is significant that these modulations of eCG bioactivities by anti-eCG Abs impact mainly on the FSH bioactivity of eCG, which is essential for ovarian stimulation and subsequent fertility after treatment and AI, and to a lesser extent on LH bioactivity.
Collapse
Affiliation(s)
- Virginie Hervé
- Unité Mixte de Recherche 6073, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/Université de Tours, Station de Physiologie de la Reproduction des Mammifères Domestiques, Nouzilly, France
| | | | | | | | | |
Collapse
|
6
|
Bousfield GR, Butnev VY, Butnev VY. Identification of twelve O-glycosylation sites in equine chorionic gonadotropin beta and equine luteinizing hormone ss by solid-phase Edman degradation. Biol Reprod 2001; 64:136-47. [PMID: 11133668 DOI: 10.1095/biolreprod64.1.136] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The O-glycosylation sites for equine LHss (eLHss) and eCGss were identified by solid-phase Edman degradation of four glycopeptides derived from the C-terminal region. Both subunits were O-glycosylated at the same 12 positions, rather than the 4-6 sites anticipated. These sites were partially glycosylated, with carbohydrate attachment ranging from 20% to 100% for eCGss and from 10% to 100% for eLHss. When the C-terminal peptide containing all but one of the O-linked oligosaccharides was removed by mild acid hydrolysis of either eLHss or eCGss, hybrid hormones could be obtained by reassociating eLHalpha,eFSHalpha, or eCGalpha with the truncated ss subunit derivatives. These hybrid hormones were identical in LH receptor-binding activity when des(121-149)eLHss or des(121-149)eCGss were combined with the same alpha subunit preparation. Thus, O-glycosylation appears to be responsible for the ss subunit contribution to the substantial difference in LH receptor-binding activity between eLH and eCG. Comparison of the equid LH/CGss sequences with those available for the primate CGss subunits indicated a greater conservation of glycosylation patterns in the former.
Collapse
Affiliation(s)
- G R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, Kansas 67260-0026, USA.
| | | | | |
Collapse
|
7
|
Hearn MT, Gomme PT. Molecular architecture and biorecognition processes of the cystine knot protein superfamily: part I. The glycoprotein hormones. J Mol Recognit 2000; 13:223-78. [PMID: 10992290 DOI: 10.1002/1099-1352(200009/10)13:5<223::aid-jmr501>3.0.co;2-l] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this review article, the reader is introduced to recent advances in our knowledge on a subset of the cystine knot superfamily of homo- and hetero-dimeric proteins, from the perspective of the endocrine glycoprotein hormone family of proteins: follitropin (FSH), Iutropin (LH), thyrotropin. (TSH) and chorionic gonadotropin (CG). Subsequent papers will address the structure-function behaviour of other members of this increasingly significant family of proteins, including various members of the transforming growth factor-beta (TGF-beta) family of proteins, the activins, inhibins, bone morphogenic growth factor, platelet derived growth factor-beta, nerve growth factor and more than 35 other proteins with similar topological features. In the present review article, specific emphasis has been placed on advances with the glycoprotein hormones (GPHs) that have facilitated greater insight into their physiological functions, molecular structures and most importantly the basis of the molecular recognition events that lead to the formation of hetero-dimeric structures as well as their specific and selective recognition by their corresponding receptors and antibodies. Thus, this review article focuses on the structural motifs involved in receptor recognition and the current techniques available to identify these regions, including the role of immunological methodology, peptide fragment design and synthesis and mutagenesis to delineate their structure-function relationships and molecular recognition behaviour.
Collapse
Affiliation(s)
- M T Hearn
- Centre for Bioprocess Technology, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia.
| | | |
Collapse
|
8
|
Bousfield GR, Baker VL, Gotschall RR, Butnev VY. Carbohydrate analysis of glycoprotein hormones. Methods 2000; 21:15-39. [PMID: 10764604 DOI: 10.1006/meth.2000.0972] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Complete carbohydrate composition analysis of glycoprotein hormones, their subunits, and oligosaccharides isolated from individual glycosylation sites can be accomplished using high-pH anion-exchange chromatography combined with pulsed amperometric detection. Neutral and amino sugars are analyzed from the same hydrolyzate by isocratic chromatography on a Dionex CarboPAC PA1 column in 16 mM NaOH. Sialic acid is quantified following mild hydrolysis conditions on the same column in 150 mM sodium acetate in 150 mM NaOH. Ion chromatography on a Dionex AS4A column in 1.8 mM Na(2)CO(3)/1.7 mM NaHCO(3); postcolumn, in-line anion micromembrane suppression; and conductivity detection can be used to quantify sulfate, a common component of pituitary glycoprotein hormone oligosaccharides. Mass spectrometric analysis before and after elimination of oligosaccharides from a single glycosylation site can provide an estimate of the average oligosaccharide mass, which facilitates interpretation of oligosaccharide composition data. Following release by peptide N-glycanase (PNGase) digestion and purification by ultrafiltration, oligosaccharides can be characterized by a high-resolution oligosaccharide mapping technique using the same equipment employed for composition analysis. Oligosaccharide mapping can be applied to the entire hormone, individual subunits, or individual glycosylation sites by varying PNGase digestion conditions or substrates. Oligosaccharide release by PNGase is readily monitored by SDS-PAGE. Site-specific deglycosylation can be confirmed by amino acid sequence analysis. For routine isolation of oligosaccharides, addition of 2-aminobenzamide at the reducing terminus facilitates detection; however, the oligosaccharide retention times are altered. Composition analysis is also affected as the 2-aminobenzamide-modified GlcNAc peak overlaps the fucose peak.
Collapse
Affiliation(s)
- G R Bousfield
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0026, USA.
| | | | | | | |
Collapse
|
9
|
Cosowsky L, Rao SN, Macdonald GJ, Papkoff H, Campbell RK, Moyle WR. The groove between the alpha- and beta-subunits of hormones with lutropin (LH) activity appears to contact the LH receptor, and its conformation is changed during hormone binding. J Biol Chem 1995; 270:20011-9. [PMID: 7650019 DOI: 10.1074/jbc.270.34.20011] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Gonadotropins are heterodimeric glycoprotein hormones that control vertebrate fertility through their actions on gonadal lutropin (luteinizing hormone, LH) and follitropin (follicle-stimulating hormone, FSH) receptors. The beta-subunits of these hormones control receptor binding specificity; however, the region of the beta-subunit that contacts the receptor has not been identified. By a process of elimination we show this contact to be the portions of beta-subunit loops one and three found in a hormone groove created by the juxtaposition of the alpha- and beta-subunits. Most other regions of the beta-subunit can be recognized by antibodies that bind to human chorionic hormone (hCG)-receptor complexes or replaced without disrupting hormone function. Using a series of bovine LH/hCG and human FSH/hCG beta-subunit chimeras we identified key hCG beta-subunit residues in the epitopes of two antibodies that bind to hCG-receptor complexes. These epitopes include the surfaces of beta-subunit loops one and three near residue 74 on the outside of the hormone groove and parts of the C-terminal end of the "seat belt" that holds the two subunits together. The antibody that recognized residue 74 bound to receptor complexes containing most mammalian lutropins better than to the free hormones, an indication that the outside surface of the beta-subunit groove is altered during hormone binding. This region of the beta-subunit is furthest from the alpha-subunit and is recognized equally well in the free beta-subunit and in the heterodimer. Thus, the receptor associated increase in antibody binding appears due to an interaction of this portion of the beta-subunit with the receptor and not to an effect of the receptor on the relative positions of the alpha- and beta-subunits. Unlike most previous studies designed to identify portions of the beta-subunit likely to contact the LH receptor, this indirect approach provides data that are more easily interpreted because it does not rely on the use of mutations that disrupt hormone function. The approach described here should be valuable for studying the receptor interactions of other complex ligands.
Collapse
Affiliation(s)
- L Cosowsky
- Department of Obstetrics/Gynecolgy, Robert Wood Johnson (Rutgers) Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
10
|
Matsui T, Mizuochi T, Titani K, Okinaga T, Hoshi M, Bousfield GR, Sugino H, Ward DN. Structural analysis of N-linked oligosaccharides of equine chorionic gonadotropin and lutropin beta-subunits. Biochemistry 1994; 33:14039-48. [PMID: 7524670 DOI: 10.1021/bi00251a012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Equine chorionic gonadotropin (eCG) and lutropin (eLH) are composed of alpha- and beta-subunits with an identical amino acid sequence but show different biological activities. To elucidate the molecular difference between these gonadotropins, the structure of the N-linked oligosaccharides of each beta-subunit was determined. N-linked sugar chains, liberated as tritum-labeled oligosaccharides by hydrazinolysis followed by N-acetylation and reduction with NaB3H4, were neutralized by sialidase digestion and/or methanolytic desulfation. Neutralized oligosaccharides were fractionated by sequential chromatography on serial lectin affinity columns and on a Bio-Gel P-4 column. Each oligosaccharide structure was determined by sequential exoglycosidase digestion in conjunction with elution profiles on lectin columns and methylation analysis. Each beta-subunit contained a single N-glycosylation site, but a high degree of microheterogeneity was observed in the structure of its N-linked oligosaccharides. eCG beta contained mono-, bi-, tri-, and tetraantennary complex-type oligosaccharides in a ratio of 3:63:13:1. eCG beta oligosaccharides contained about 16% of the bisecting GlcNAc and about 20% of poly-N-acetyllactosamine structures. Elongation of N-acetyllactosamine units showed a preference to the Man alpha 1-->6 side rather than the Man alpha 1-->3 side. Triantennary chains had only a C-2, 4-branched structure. eLH beta contained only mono- and biantennary complex-type and hybrid-type oligosaccharides in a ratio of approximately 18:67:10. eLH beta also contained bisected structures in about 18%. Oligosaccharides derived from the sulfated fraction of eLH beta contained GalNAc residues at nonreducing termini. Oligosaccharides from the sialylated/sulfated fraction of eLH beta contained both Gal and GalNAc residues at nonreducing termini, and those GalNAc residues were preferentially distributed to the Man alpha 1-->3 side of the trimannosyl core. These results clearly indicate that eCG beta and eLH beta possess structurally distinct N-linked oligosaccharides in addition to different charge groups even though they have a protein moiety identical to each other. Our results suggest that the biological activity of these hormones might be modulated by its terminal charge groups and stem structures of carbohydrate moiety synthesized in different organs.
Collapse
Affiliation(s)
- T Matsui
- Division of Biomedical Polymer Science, Fujita Health University, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Chorionic gonadotropin (α and β subunit RNA's are present in equine placental membranes by day 30 of pregnancy. J Equine Vet Sci 1993. [DOI: 10.1016/s0737-0806(07)80267-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Smith P, Bousfield G, Kumar S, Fiete D, Baenziger J. Equine lutropin and chorionic gonadotropin bear oligosaccharides terminating with SO4-4-GalNAc and Sia alpha 2,3Gal, respectively. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54004-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Baenziger JU, Kumar S, Brodbeck RM, Smith PL, Beranek MC. Circulatory half-life but not interaction with the lutropin/chorionic gonadotropin receptor is modulated by sulfation of bovine lutropin oligosaccharides. Proc Natl Acad Sci U S A 1992; 89:334-8. [PMID: 1729704 PMCID: PMC48231 DOI: 10.1073/pnas.89.1.334] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Certain of the glycoprotein hormones, including bovine lutropin (bLH), bear asparagine-linked oligosaccharides terminating with the sequence SO4-4GalNAc beta 1-4GlcNAc beta 1-2Man alpha. To establish the biologic significance of these sulfate-bearing oligosaccharides we have compared properties of native bLH, desulfated bLH, recombinant bLH produced in Chinese hamster ovary cells that bears asparagine-linked oligosaccharides terminating with sialic acid alpha 2- 3Gal beta 1-4GlcNAc beta 1-2Man alpha rather than sulfated oligosaccharides (bLH/CHO), and desialyzed bLH/CHO. Using cultured MA-10 cells, a Leydig cell tumor line expressing the lutropin/chorionic gonadotropin receptor, we have found no differences in binding, cAMP production, or progesterone production between native and desulfated bLH. Sulfation of bLH oligosaccharides does not, therefore, modulate bLH bioactivity at the level of the lutropin/chorionic gonadotropin receptor. Removal of sulfate from bLH oligosaccharides and sialic acid from bLH/CHO oligosaccharides results in rapid clearance from the circulation by the hepatocyte asialoglycoprotein receptor. Thus sulfate, like sialic acid, prevents clearance from the circulation by the asialoglycoprotein receptor. The rapid removal of desulfated bLH from the circulation causes a 4- to 16-fold increase in the amount of bLH required to stimulate ovulation compared with native bLH. Particularly striking were differences in the metabolic clearance rates for native bLH and bLH/CHO, 7.3% per min and 1.7% per min, respectively. These differences were unexpected because bLH and bLH/CHO do not differ significantly in charge or size. The different metabolic clearance rates obtained for bLH and bLH/CHO indicate that the presence of sulfated rather than sialylated oligosaccharides on bLH results in a shorter circulatory half-life, which has a significant impact on in vivo bioactivity.
Collapse
Affiliation(s)
- J U Baenziger
- Department of Pathology, Washington University Medical School, St. Louis, MO 63110
| | | | | | | | | |
Collapse
|
14
|
Fiete D, Srivastava V, Hindsgaul O, Baenziger JU. A hepatic reticuloendothelial cell receptor specific for SO4-4GalNAc beta 1,4GlcNAc beta 1,2Man alpha that mediates rapid clearance of lutropin. Cell 1991; 67:1103-10. [PMID: 1662117 DOI: 10.1016/0092-8674(91)90287-9] [Citation(s) in RCA: 235] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have identified a receptor in hepatic endothelial and Kupffer cells that binds oligosaccharides terminating with the sequence SO4-4GalNAc beta 1,4GlcNAc beta 1,2-Man alpha (S4GGnM). This receptor can account for the rapid removal of the glycoprotein hormone lutropin, which bears unique Asn-linked oligosaccharides terminating in S4GGnM, from the circulation. Hepatic endothelial cells express 579,000 S4GGnM receptors at their surface and bind lutropin with an apparent Kd of 1.63 x 10(-7) M. Bound ligand is rapidly internalized. Binding does not require divalent cations, is reversed by incubation at pH 5.0 or below, and is inhibited by fucoidin but not by hyaluronate, heparin, chondroitin sulfate, or dextran sulfate. We propose that the S4GGnM-specific receptor represents a major mechanism for clearance of certain sulfated glycoproteins from the blood, including members of the glycoprotein hormone family.
Collapse
Affiliation(s)
- D Fiete
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | |
Collapse
|