Gan LS, Lu JY, Hershkowitz DM, Alworth WL. Effects of acetylenic and olefinic pyrenes upon cytochrome P-450 dependent benzo[a]pyrene hydroxylase activity in liver microsomes.
Biochem Biophys Res Commun 1985;
129:591-6. [PMID:
4015648 DOI:
10.1016/0006-291x(85)90192-5]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
1-Ethynylpyrene, trans-, & cis-1-(2-bromovinyl)pyrene, methyl 1-pyrenyl acetylene, and phenyl 1-pyrenyl acetylene are substrates for cytochrome P-450 dependent monooxygenases and also inhibitors of cytochrome P-450 dependent benzo[a]pyrene hydroxylase activities in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene, trans-1-(2-bromovinyl)pyrene, and methyl 1-pyrenyl acetylene cause a mechanism based inhibition (suicide inhibition) of the benzo[a]pyrene hydroxylase activities in microsomes from 5,6-benzoflavone or phenobarbital pretreated rats, while cis-1-(2-bromovinyl)pyrene only causes suicide inhibition of the hydroxylse activities in the 5,6-benzoflavone induced microsomes and phenyl 1-pyrenyl acetylene does not cause a detectable suicide inhibition of these activities in either type of microsome. Incubation with NADPH and 1-ethynylpyrene, trans-, or cis-1-(2-bromovinyl)pyrene causes a loss of the P-450 content in the microsomes from 5,6-benzoflavone or phenobarbital pretreated rats, but incubations with methyl 1-pyrenyl acetylene or phenyl 1-pyrenyl acetylene did not cause a loss of the P-450 content of either microsomal preparation.
Collapse