Forest C, Doglio A, Casteilla L, Ricquier D, Ailhaud G. Expression of the mitochondrial uncoupling protein in brown adipocytes. Absence in brown preadipocytes and BFC-1 cells. Modulation by isoproterenol in adipocytes.
Exp Cell Res 1987;
168:233-46. [PMID:
3023117 DOI:
10.1016/0014-4827(87)90431-9]
[Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The expression of the uncoupling protein has been compared in cells of BFC-1 clonal line established from mouse brown adipose tissue (BAT) and in preadipocytes, as well as in adipocytes from mouse BAT, both in primary culture. The results of immunoblots show that, after one week in culture, adipocytes have a reduced level of the 32 kD protein. This level can be raised 2-3.5-fold by a 24-h exposure to isoproterenol. Thus a direct modulation by a beta-agonist drug in the expression of the uncoupling protein is observed. Under the same conditions as well as under various other conditions, preadipocytes in primary culture and BFC-1 cells do not express the uncoupling protein. At the same time these cells are able both to differentiate into adipose cells, as demonstrated by the emergence of enzyme markers and triglyceride accumulation, and to respond to isoproterenol. Thus isoproterenol is not sufficient to trigger the expression of the uncoupling protein and behaves as a mere modulator once the cells have acquired the capacity to express it. Injection of undifferentiated BFC-1 cells into athymic mice bearing catecholamine-containing mini-osmotic pumps, or co-cultures of BFC-1 cells and pheochromocytoma PC-12 cells do not allow BFC-1 cells to express the uncoupling protein. Taken together, the results suggest that the formation of brown preadipocytes is critically linked during development to the release by sympathetic nerves of specific trophic factors acting locally.
Collapse