1
|
Blázquez-Bermejo C, Molina-Granada D, Vila-Julià F, Jiménez-Heis D, Zhou X, Torres-Torronteras J, Karlsson A, Martí R, Cámara Y. Age-related metabolic changes limit efficacy of deoxynucleoside-based therapy in thymidine kinase 2-deficient mice. EBioMedicine 2019; 46:342-355. [PMID: 31351931 PMCID: PMC6711114 DOI: 10.1016/j.ebiom.2019.07.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023] Open
Abstract
Background Thymidine kinase 2 (TK2) catalyses the phosphorylation of deoxythymidine (dThd) and deoxycytidine (dCtd) within mitochondria. TK2 deficiency leads to mtDNA depletion or accumulation of multiple deletions. In patients, TK2 mutations typically manifest as a rapidly progressive myopathy with infantile onset, leading to respiratory insufficiency and encephalopathy in the most severe clinical presentations. TK2-deficient mice develop the most severe form of the disease and die at average postnatal day 16. dThd+dCtd administration delayed disease progression and expanded lifespan of a knockin murine model of the disease. Methods We daily administered TK2 knockout mice (Tk2KO) from postnatal day 4 with equimolar doses of dThd+dCtd, dTMP+dCMP, dThd alone or dCtd alone. We monitored body weight and survival and studied different variables at 12 or 29 days of age. We determined metabolite levels in plasma and target tissues, mtDNA copy number in tissues, and the expression and activities of enzymes with a relevant role in mitochondrial dNTP anabolism or catabolism. Findings dThd+dCtd treatment extended average lifespan of Tk2KO mice from 16 to 34 days, attenuated growth retardation, and rescued mtDNA depletion in skeletal muscle and other target tissues of 12-day-old mice, except in brain. However, the treatment was ineffective in 29-day-old mice that still died prematurely. Bioavailability of dThd and dCtd markedly decreased during mouse development. Activity of enzymes catabolizing dThd and dCtd increased with age in small intestine. Conversely, the activity of the anabolic enzymes decreased in target tissues during mouse development. We also found that administration of dThd alone had the same impact on survival to that of dThd+dCtd, whereas dCtd alone had no influence on lifespan. Interpretation dThd+dCtd treatment recruits alternative cytosolic salvage pathways for dNTP synthesis, suggesting that this therapy would be of benefit for any Tk2 mutation. dThd accounts for the therapeutic effect of the combined treatment in mice. During the first weeks after birth, mice experience marked tissue-specific metabolic regulations and ontogenetic changes in dNTP metabolism-related enzymes that limit therapeutic efficacy to early developmental stages. Fund This study was funded by grants from the Spanish Ministry of Industry, Economy and Competitiveness, the Spanish Instituto de Salud Carlos III, the Fundación Inocente, Inocente, AFM Téléthon and the Generalitat de Catalunya. The disclosed funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- Cora Blázquez-Bermejo
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - David Molina-Granada
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ferran Vila-Julià
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Jiménez-Heis
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xiaoshan Zhou
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Shu CJ, Campbell DO, Lee JT, Tran AQ, Wengrod JC, Witte ON, Phelps ME, Satyamurthy N, Czernin J, Radu CG. Novel PET probes specific for deoxycytidine kinase. J Nucl Med 2010; 51:1092-8. [PMID: 20554721 DOI: 10.2967/jnumed.109.073361] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Deoxycytidine kinase (dCK) is a rate-limiting enzyme in the deoxyribonucleoside salvage pathway and a critical determinant of therapeutic activity for several nucleoside analog prodrugs. We have previously reported the development of 1-(2'-deoxy-2'-(18)F-fluoro-beta-D-arabinofuranosyl)cytosine ((18)F-FAC), a new probe for PET of dCK activity in immune disorders and certain cancers. The objective of the current study was to develop PET probes with improved metabolic stability and specificity for dCK. Toward this goal, several candidate PET probes were synthesized and evaluated in vitro and in vivo. METHODS High-pressure liquid chromatography was used to analyze the metabolic stability of (18)F-FAC and several newly synthesized analogs with the natural D-enantiomeric sugar configuration or the corresponding unnatural L-configuration. In vitro kinase and uptake assays were used to determine the affinity of the (18)F-FAC L-nucleoside analogs for dCK. The biodistribution of selected L-analogs in mice was determined by small-animal PET/CT. RESULTS Candidate PET probes were selected using the following criteria: low susceptibility to deamination, high affinity for purified recombinant dCK, high uptake in dCK-expressing cell lines, and biodistribution in mice reflective of the tissue-expression pattern of dCK. Among the 10 newly developed candidate probes, 1-(2'-deoxy-2'-(18)F-fluoro-beta-L-arabinofuranosyl)cytosine (L-(18)F-FAC) and 1-(2'-deoxy-2'-(18)F-fluoro-beta-L-arabinofuranosyl)-5-methylcytosine (L-(18)F-FMAC) most closely matched the selection criteria. The selection of L-(18)F-FAC and L-(18)F-FMAC was validated by showing that these two PET probes could be used to image animal models of leukemia and autoimmunity. CONCLUSION Promising in vitro and in vivo data warrant biodistribution and dosimetry studies of L-(18)F-FAC and L-(18)F-FMAC in humans.
Collapse
Affiliation(s)
- Chengyi J Shu
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Bergman AM, Adema AD, Balzarini J, Bruheim S, Fichtner I, Noordhuis P, Fodstad O, Myhren F, Sandvold ML, Hendriks HR, Peters GJ. Antiproliferative activity, mechanism of action and oral antitumor activity of CP-4126, a fatty acid derivative of gemcitabine, in in vitro and in vivo tumor models. Invest New Drugs 2010; 29:456-66. [PMID: 20066470 PMCID: PMC3076580 DOI: 10.1007/s10637-009-9377-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 12/11/2009] [Indexed: 11/28/2022]
Abstract
Gemcitabine is a deoxycytidine (dCyd) analog with activity in leukemia and solid tumors, which requires phosphorylation by deoxycytidine kinase (dCK). Decreased membrane transport is a mechanism of resistance to gemcitabine. In order to facilitate gemcitabine uptake and prolong retention in the cell, a lipophilic pro-drug was synthesized (CP-4126), with an elaidic fatty acid esterified at the 5'position. CP-4126 was tested in cell lines resistant to cytarabine, another dCyd analog or gemcitabine. Activity of gemcitabine and the derivative was comparable in the parent cell lines, while in dCK deficient cells all compounds were inactive. However, inhibition of nucleoside transport increased the IC(50) for gemcitabine up to 200-fold, but not for CP-4126, underlining the independence of a nucleoside transporter. For in vivo evaluation, nude mice bearing a human xenograft were treated intraperitoneally every third day for five doses at the maximal tolerated dose. In melanoma, sarcoma, lung, prostate, pancreatic and breast cancer xenografts, gemcitabine and CP-4126 were equally and highly effective; in four other xenografts moderately but equally active. In contrast to gemcitabine, CP-4126 could be administered orally, with a schedule and dose dependent toxicity and antitumor activity. In a colon cancer xenograft, antitumor activity of orally administered CP-4126 was equal to the intraperitoneally administered drug. In conclusion, CP-4126 is membrane transporter independent. Intraperitoneally administered CP-4126 was as effective as gemcitabine in several xenografts and CP-4126 is tolerated when orally administered. CP-4126 seems to be a promising new anticancer drug.
Collapse
Affiliation(s)
- Andries M Bergman
- Department of Medical Oncology, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Spadari S, Maga G, Verri A, Focher F. Molecular basis for the antiviral and anticancer activities of unnatural L-beta-nucleosides. Expert Opin Investig Drugs 2005; 7:1285-300. [PMID: 15992031 DOI: 10.1517/13543784.7.8.1285] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As a general rule, enzymes act on only one enantiomer of a chiral substrate and only one of the enantiomeric forms of a chiral molecule may bind effectively at the catalytic site, displaying biological activity. In recent years, some exceptions have been found among viral and cellular enzymes involved in the synthesis of deoxynucleoside triphosphates and in their polymerisation into DNA. Examples are: herpes virus thymidine kinases, cellular deoxycytidine kinase and deoxynucleotide kinases, human immunodeficiency virus type 1 (HIV-1) reverse transcriptase, hepatitis B virus (HBV) DNA polymerase and, to a lesser extent, some cellular DNA polymerases. The lack of enantioselectivity allows herpes simplex virus (HSV) thymidine kinase and cellular deoxycytidine kinase to phosphorylate the unnatural L-beta-enantiomers of D-thymidine and D-deoxycytidine, respectively, or of their analogues to monophosphate. This phosphorylation represents the first and often the rate-limiting step of their activation to triphosphates. The L-triphosphates can then exert antiviral (anti-HSV, anti-Human cytomegalovirus, anti-HIV-1, anti-HBV) and anticancer activities. Although only one L-nucleoside (3TC) has so far gained United States of America Food and Drug Administration (USA FDA) approval for clinical use against HIV-1, other L-enantiomers of nucleoside analogues, which have shown antiviral or anticancer activity in cell cultures are in clinical trials. Their resistance to enantioselective enzymes, such as thymidine phosphorylase, thymidylate synthase, (deoxy)-cytidine and dCMP deaminases, and their lower affinity for the mitochondrial thymidine kinase can ensure a higher selectivity and lower cytotoxicity with respect to those exerted by their corresponding natural D-enantiomers and might be exploited to solve problems arising during chemotherapy, such as metabolic inactivation, cytotoxicity and drug-resistance.
Collapse
Affiliation(s)
- S Spadari
- Istituto di Genetica Biochimica ed Evoluzionistica, National Research Council, Abbiategrasso 207, 27100 Pavia, Italy.
| | | | | | | |
Collapse
|
5
|
Bergman AM, Kuiper CM, Voorn DA, Comijn EM, Myhren F, Sandvold ML, Hendriks HR, Peters GJ. Antiproliferative activity and mechanism of action of fatty acid derivatives of arabinofuranosylcytosine in leukemia and solid tumor cell lines. Biochem Pharmacol 2004; 67:503-11. [PMID: 15037202 DOI: 10.1016/j.bcp.2003.09.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Accepted: 09/12/2003] [Indexed: 12/01/2022]
Abstract
1-beta-D-arabinofuranosylcytosine (ara-C) is a deoxycytidine analog with activity in leukemia, which requires phosphorylation by deoxycytidine kinase (dCK) to allow formation of its active phosphate 1-beta-D-arabinofuranosylcytosine triphosphate, but can be deaminated by deoxycytidine deaminase. Altered membrane transport is also a mechanism of drug resistance. In order to facilitate ara-C uptake and prolong retention in the cell, lipophilic prodrugs were synthesized. Fatty acid groups with a varying acyl chain length and number of double bonds were esterified at the 5' position on the sugar moiety of ara-C. The compounds were tested in two pairs of ara-C resistant leukemic cell lines (murine L1210 and rat BCLO and their resistant variants L4A6 and Bara-C, respectively) and two pairs of cell lines with a resistance to gemcitabine, another deoxycytidine analog (human ovarian cancer A2780 and murine colon cancer C26-A and their resistant variants AG6000 and C26-G, respectively). L4A6, Bara-C and AG6000 have varying degrees of decreased dCK activity, while the mechanism for C26-G is not yet clear. In the parent cell lines, ara-C was more active, but in the resistant variants several of the analogs were more active, while the degree of cross-resistance varied. In AG6000 with a total dCK deficiency, all compounds were inactive. Structure-activity relation analysis showed that ara-C derivatives with shorter acyl chains and more double bonds were more active in the parental and drug resistant cells. Further mechanistic studies were performed with the elaidic acid derivative of ara-C (CP-4055). CP-4055 inhibited deamination of dCyd partly and induced DNA synthesis inhibition effectively in C26-A and C26-G cells, but the retention of inhibition was much longer for CP-4055 than for ara-C. In contrast to ara-C, CP-4055 inhibited RNA synthesis for 60% after drug exposure. In conclusion, CP-4055 seems to be a promising prodrug, whose effects were different and longer lasting than for the parent drug.
Collapse
Affiliation(s)
- A M Bergman
- Department of Medical Oncology, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Bergman AM, Pinedo HM, Peters GJ. Determinants of resistance to 2',2'-difluorodeoxycytidine (gemcitabine). Drug Resist Updat 2002; 5:19-33. [PMID: 12127861 DOI: 10.1016/s1368-7646(02)00002-x] [Citation(s) in RCA: 262] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The inherent or induced resistance of tumors to cytostatic agents is a major clinical problem. In this review, we summarize the pre-clinical mechanisms of acquired and inherent resistance to the fluorinated deoxycytidine analog gemcitabine (2',2'-difluorodeoxycytidine, dFdC, Gemzar((R))), which has proven activity in non-small cell lung carcinoma, pancreatic and bladder cancer. Extensive research has been performed to elucidate the complex mechanism of action of this relatively new drug. Gemcitabine requires phosphorylation to mono-, di- and triphosphates to be active. Similar to the structurally and functionally related deoxycytidine analog ara-C, the first, crucial step in phosphorylation is catalyzed by deoxycytidine kinase (dCK). However, in contrast to ara-C, gemcitabine has multiple intracellular targets; up- or down-regulation of these targets may confer resistance to this drug. Resistance is associated with altered activities of enzymes involved in the metabolism of the drug, of target enzymes, and of enzymes involved in programmed cell death. However, the only strong correlations with gemcitabine sensitivity are dCK activity and dFdCTP pools, with a potential important role for ribonucleotide reductase.
Collapse
Affiliation(s)
- Andries M Bergman
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
7
|
Vincenzetti S, Cambi A, Neuhard J, Schnorr K, Grelloni M, Vita A. Cloning, expression, and purification of cytidine deaminase from Arabidopsis thaliana. Protein Expr Purif 1999; 15:8-15. [PMID: 10024464 DOI: 10.1006/prep.1998.0959] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complementary DNA (cDNA) coding for Arabidopsis thaliana cytidine deaminase 1 (AT-CDA1) was obtained from the amplified A. thaliana cDNA expression library, provided by R. W. Davis (Stanford University, CA). AT-CDA1 cDNA was subcloned into the expression vector pTrc99-A and the protein, expressed in Escherichia coli following induction with isopropyl 1-thio-beta-d-galactopyranoside, showed high cytidine deaminase activity. The nucleotide sequence showed a 903-bp open reading frame encoding a polypeptide of 301 amino acids with a calculated molecular mass of 32,582. The deduced amino acid sequence of AT-CDA1 showed no transit peptide for targeting to the chloroplast or mitochondria indicating that this form of cytidine deaminase is probably expressed in the cytosol. The recombinant AT-CDA1 was purified to homogeneity by a heat treatment followed by an ion-exchange chromatography. The final enzyme preparation was >98% pure as judged by SDS-PAGE and showed a specific activity of 74 U/mg. The molecular mass of AT-CDA1 estimated by gel filtration was 63 kDa, indicating, in contrast to the other eukaryotic CDAs, that the enzyme is a dimer composed of two identical subunits. Inductively coupled plasma-optical emission spectroscopy analysis indicated that the enzyme contains 1 mol of zinc atom per mole of subunit. The kinetic properties of AT-CDA1 both toward the natural substrates and with analogs indicated that the catalytic mechanism of the plant enzyme is probably very similar to that of the human the E. coli enzymes.
Collapse
Affiliation(s)
- S Vincenzetti
- Dipartimento di Scienze Morfologiche e Biochimiche Comparate, Università di Camerino, Camerino (MC), Italy
| | | | | | | | | | | |
Collapse
|
8
|
Verri A, Focher F, Priori G, Gosselin G, Imbach JL, Capobianco M, Garbesi A, Spadari S. Lack of enantiospecificity of human 2'-deoxycytidine kinase: relevance for the activation of beta-L-deoxycytidine analogs as antineoplastic and antiviral agents. Mol Pharmacol 1997; 51:132-8. [PMID: 9016355 DOI: 10.1124/mol.51.1.132] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We demonstrate that human 2'-deoxycytidine kinase (dCK) is a nonenantioselective enzyme because it phosphorylates beta-D-2'-deoxycytidine (D-dCyd), the natural substrate, and beta-L-2'-deoxycytidine (L-dCyd), its enantiomer, with the same efficiency. Kinetic studies showed that L-dCyd is a competitive inhibitor of the phosphorylation of D-dCyd with a Kl value of 0.12 microM, which is lower than the K(m) value for D-dCyd (1,2 microM). Chemical modifications of either the base or the pentose ring strongly decrease the inhibitory potency of L-dCyd, L-dCyd is resistant to cytidine deaminase and competes in cell cultures with the natural D-dCyd as substrate for dCK, thus reducing the incorporation of exogenous [3H]dCyd into DNA. L-dCyd had no effect on the pool of dTTP deriving from the salvage or from the de novo synthesis, does not inhibit short term RNA and protein syntheses, and shows little or no cytotoxicity. Our results indicate a catalytic similarity between human dCK and herpetic thymidine kinases, enzymes that also lack stereospecificity. This functional analogy underlines the potential role of dCK as activator of L-deoxycytidine analogs as antiviral and antineoplastic agents and lends support to the hypothesis that herpesvirus thymidine kinase might have evolved from a captured cellular dCK gene, developing the ability to phosphorylate thymidine and retaining that to phosphorylate deoxycytidine.
Collapse
Affiliation(s)
- A Verri
- Istituto di Genetica Biochimica ed Evoluzionistica, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Garcia ZC, Poksay KS, Boström K, Johnson DF, Balestra ME, Shechter I, Innerarity TL. Characterization of apolipoprotein B mRNA editing from rabbit intestine. ACTA ACUST UNITED AC 1992; 12:172-9. [PMID: 1371931 DOI: 10.1161/01.atv.12.2.172] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apolipoprotein (apo) B-48 is generated by a unique physiological process. Cytidine 6,666 of the apo B primary transcript is posttranscriptionally converted to a uridine by an RNA editing mechanism that transforms the codon for glutamine 2,153 to a termination codon. The editing reaction can be duplicated in a cell-free extract. In this study, the apo B-48 mRNA editing activity derived from partially purified extracts of rabbit enterocytes was characterized. The optimum conditions for the editing reaction were determined to be a salt concentration of 0.125-0.150 M NaCl or KCl, a pH of 8-8.5, and a temperature of 30 degrees C. The reaction rate was linear up to 45 minutes and was proportional to the editing extract concentration. No metal ion cofactors, DNA or RNA cofactors, or energy requirements were identified. At optimum conditions, the reaction followed Michaelis-Menten kinetics, with a Km of 0.4 nM for the rabbit RNA substrate. In addition, the reaction rate was enhanced by the addition of 25 micrograms/ml heparin or 40% glycerol. The characteristics of the editing reaction suggest that it is catalyzed by a nucleotide sequence-specific cytidine deaminase that is either a single enzyme or a multimeric protein.
Collapse
Affiliation(s)
- Z C Garcia
- Gladstone Foundation Laboratories for Cardiovascular Disease, University of California, San Francisco 94140-0608
| | | | | | | | | | | | | |
Collapse
|
10
|
Cacciamani T, Vita A, Cristalli G, Vincenzetti S, Natalini P, Ruggieri S, Amici A, Magni G. Purification of human cytidine deaminase: molecular and enzymatic characterization and inhibition by synthetic pyrimidine analogs. Arch Biochem Biophys 1991; 290:285-92. [PMID: 1929398 DOI: 10.1016/0003-9861(91)90543-r] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cytidine deaminase has been purified to homogeneity from human placenta by a rapid and efficient procedure consisting of affinity chromatography followed by hydrophobic interaction chromatography. The final enzyme preparation showed a specific activity of 64.1 units/mg, corresponding to about 46,000-fold purification with respect to the crude extract. The enzyme is a 52-kDa oligomeric protein composed of four apparently identical subunits. The acidic isoelectric point is 4.5. The enzyme's stability is strictly dependent on the presence of reducing agents. Amino acid analysis reveals the presence of five thiol groups per monomer which cannot be titrated by Ellman's reagent in the native enzyme. However, the presence of sulfhydryl groups involved in the catalytic activity was evidenced by the inhibition exerted by p-chloromercuribenzoate and heavy metal ions. In addition, the protection effected by the substrate against the p-chloromercuribenzoate inhibition and the competitive inhibition exerted by 5-(chloromercuri)cytidine suggest the presence of a thiol group(s) in the catalytic site of the enzyme. pH studies have shown that the rapid decline of activity occurring at pH 4.5 might result from the protonation of the pyrimidine ring at the N-3 position. The enzyme catalyzes the deamination of cytidine, deoxycytidine, and several analogs, including antineoplastic agents, thus abolishing their pharmacological activity. Therefore, several pyrimidine nucleoside analogs have been tested as potential inhibitors of the enzyme. The competitive inhibition exerted by cytidine analogs having the ribose moiety replaced by aliphatic chains is interesting.
Collapse
Affiliation(s)
- T Cacciamani
- Dipartimento di Biologia M.C.A., Università di Camerino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Vita A, Vincenzetti S, Amici A, Ferretti E, Magni G. Cytidine deaminase: a rapid method of purification and some properties of the enzyme from human placenta. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 309B:235-8. [PMID: 1781374 DOI: 10.1007/978-1-4615-7703-4_52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- A Vita
- Dipartimento di Biologia C.M.A., Università di Camerino, Italy
| | | | | | | | | |
Collapse
|
12
|
Abstract
The pyrimidine antimetabolite drugs consist of base and nucleoside analogues of the naturally occurring pyrimidines uracil, thymine and cytosine. As is typical of antimetabolites, these drugs have a strong structural similarity to endogenous nucleic acid precursors. The structural differences are usually substitutions at one of the carbons in the pyrimidine ring itself or substitutions at on of the hydrogens attached to the ring of the pyrimidine or sugar (ribose or deoxyribose). Despite the differences noted above, these analogues, can still be taken up into cells and then metabolized via anabolic or catabolic pathways used by endogenous pyrimidines. Cytotoxicity results when the antimetabolite either is incorporated in place of the naturally occurring pyrimidine metabolite into a key molecule (such as RNA or DNA) or competes with the naturally occurring pyrimidine metabolite for a critical enzyme. There are four pyrimidine antimetabolites that are currently used extensively in clinical oncology. These include the fluoropyrimidines fluorouracil and fluorodeoxyuridine, and the cytosine analogues, cytosine arabinoside and azacytidine.
Collapse
Affiliation(s)
- G C Daher
- Department of Pharmacology, University of Alabama, Birmingham 35294
| | | | | |
Collapse
|
13
|
Affiliation(s)
- T Tsuchiya
- Institute of Bioorganic Chemistry, Kawasaki, Japan
| |
Collapse
|
14
|
Vita A, Cacciamani T, Natalini P, Ruggieri S, Magni G. Cytidine deaminase from human spleen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1989; 253B:71-7. [PMID: 2610147 DOI: 10.1007/978-1-4684-5676-9_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- A Vita
- Departimento di Biologia Cellulare, Universita di Camerino, Italy
| | | | | | | | | |
Collapse
|
15
|
Kong XB, Andreeff M, Fanucchi MP, Fox JJ, Watanabe KA, Vidal P, Chou TC. Cell differentiation effects of 2'-fluoro-1-beta-D-arabinofuranosyl pyrimidines in HL-60 cells. Leuk Res 1987; 11:1031-9. [PMID: 3480397 DOI: 10.1016/0145-2126(87)90123-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A group of 2'-fluoro and 5-substituted arabinosyl pyrimidines and a group of base-substituted pseudoisocytidine analogs were evaluated for their capacity to induce differentiation in the human promyelocytic leukemia cell line, HL-60. These compounds were compared to 1-beta-D-arabinofuranosylcytosine (Ara-C) by monitoring: (1) inhibition of cell growth; (2) morphological maturation; (3) nitroblue tetrazolium (NBT) reduction; (4) expression of a myeloid differentiation antigen, Mo1; and (5) inhibition of colony formation. Exposure of logarithmically growing cells for 5 days to Ara-C, 2'-fluoro-Ara-C (FAC), 2'-fluoro-5-methyl-Ara-C (FMAC) and 2'-fluoro-5-ethyl-Ara-C (FEAC) resulted in cell growth inhibition at ED50 concentrations of 0.007, 0.11, 1.7 and 18 microM, and at cytostatic concentrations of 0.1, 0.5, 5.0 and 50 microM, respectively. These compounds induced granulocytic and monocytic maturation, reduction of NBT, increased expression of Mo1 antigen and a decrease or loss of both cell proliferation and colony formation in semisolid medium. There were few, if any, cell differentiation effects for the uracil nucleosides and pseudoisonucleosides tested. We found that Ara-C was the most cytotoxic of the compounds, and that when comparing absolute numbers of differentiated cells, i.e. percent of positive cells multiplied by the number of viable cells, FAC, FMAC and FEAC were superior to Ara-C inducing differentiation of HL-60 cells.
Collapse
Affiliation(s)
- X B Kong
- Laboratory of Pharmacology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | | | | | | | | | | | | |
Collapse
|