Schäfer M, Behle G, Varsányi M, Heilmeyer LM. Ca2+ regulation of 1-(3-sn-phosphatidyl)-1D-myo-inositol 4-phosphate formation and hydrolysis on sarcoplasmic-reticular Ca2+-transport ATPase. A new principle of phospholipid turnover regulation.
Biochem J 1987;
247:579-87. [PMID:
2827632 PMCID:
PMC1148452 DOI:
10.1042/bj2470579]
[Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lipid phosphorylation was shown to occur on the isolated sarcoplasmic-reticulum (SR) Ca2+-transport ATPase. More than 95% of the radioactivity incorporated on incubation of the SR ATPase with [gamma-32P]ATPMg can be extracted with acidic organic solvents and was identified as 1-(3-sn-phosphatidyl)-1D-myo-inositol 4-phosphate (PtdIns4P) [Varsányi, Toelle, Heilmeyer, Dawson & Irvine (1983) EMBO J. 2, 1543-1548]. This lipid phosphorylation is only observed at nanomolar concentrations of free Ca2+; in the presence of micromolar free Ca2+ PtdIns4P disintegrates rapidly. Also, upon blockade of the kinase reaction PtdIns4P decomposes, indicating a PtdIns/PtdIns4P turnover. The PtdIns4P concentration is dependent on the free Ca2+ concentration, being half-maximal at 35 nM-Ca2+. PtdIns4P hydrolysis is catalysed by a PtdIns4P phosphomonoesterase; accordingly no diacylglycerol is formed, which would be a product of a phosphodiesteratic cleavage. Fluoride inhibits this phosphomonoesterase. Ca2+ does not influence directly either the PtdIns kinase or the PtdIns4P phosphomonoesterase. PtdIns4P forms a tight complex with the transport ATPase, from which it can be removed only by chromatography on heparin-agarose in the presence of Triton X-100. It is concluded that Ca2+ regulates the PtdIns/PtdIns4P turnover by availability of substrate, depending on the Ca2+-transport-ATPase conformation, which traps or exposes the respective lipid head groups.
Collapse