Sreerama L, Sladek NE. Identification and characterization of a novel class 3 aldehyde dehydrogenase overexpressed in a human breast adenocarcinoma cell line exhibiting oxazaphosphorine-specific acquired resistance.
Biochem Pharmacol 1993;
45:2487-505. [PMID:
8328987 DOI:
10.1016/0006-2952(93)90231-k]
[Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Associated with the oxazaphosphorine-specific acquired resistance exhibited by a human breast adenocarcinoma subline growing in monolayer culture, viz. MCF-7/OAP, was the overexpression (> 100-fold as compared with the very small amount expressed in the oxazaphosphorine-sensitive parent line) of a class 3 aldehyde dehydrogenase, viz. ALDH-3, judged to be so because it is a polymorphic enzyme (pI values ca. 6.0) present in the cytosol that is heat labile, is insensitive to inhibition by disulfiram (25 microM), much prefers benzaldehyde to acetaldehyde as a substrate and, at concentrations of 4 mM, prefers NADP to NAD as a cofactor. No other aldehyde dehydrogenases were found in these cells. As compared with those of the prototypical class 3 human ALDH-3, viz. constitutive human stomach mucosa ALDH-3, the physical and catalytic properties of the MCF-7/OAP enzyme differed somewhat with regard to pI values, native M(r), subunit M(r), recognition of the subunit by anti-stomach ALDH-3 IgY, pH stability, cofactor influence on catalytic activity, and the ability to catalyze, albeit poorly, the oxidation of an oxazaphosphorine, viz. aldophosphamide. Hence, the MCF-7/OAP ALDH-3 was judged to be a novel class 3 aldehyde dehydrogenase. Small amounts of a seemingly identical enzyme are also present in normal pre- and post-menopausal breast tissue. None could be detected in human liver, kidney or placenta, suggesting that it may be a tissue-specific enzyme.
Collapse