1
|
An Unbiased Drug Screen for Seizure Suppressors in Duplication 15q Syndrome Reveals 5-HT 1A and Dopamine Pathway Activation as Potential Therapies. Biol Psychiatry 2020; 88:698-709. [PMID: 32507391 PMCID: PMC7554174 DOI: 10.1016/j.biopsych.2020.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/06/2020] [Accepted: 04/02/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Duplication 15q (Dup15q) syndrome is a rare neurogenetic disorder characterized by autism and pharmacoresistant epilepsy. Most individuals with isodicentric duplications have been on multiple medications to control seizures. We recently developed a model of Dup15q in Drosophila by elevating levels of fly Dube3a in glial cells using repo-GAL4, not neurons. In contrast to other Dup15q models, these flies develop seizures that worsen with age. METHODS We screened repo>Dube3a flies for approved compounds that can suppress seizures. Flies 3 to 5 days old were exposed to compounds in the fly food during development. Flies were tested using a bang sensitivity assay for seizure recovery time. At least 40 animals were tested per experiment, with separate testing for male and female flies. Studies of K+ content in glial cells of the fly brain were also performed using a fluorescent K+ indicator. RESULTS We identified 17 of 1280 compounds in the Prestwick Chemical Library that could suppress seizures. Eight compounds were validated in secondary screening. Four of these compounds regulated either serotonergic or dopaminergic signaling, and subsequent experiments confirmed that seizure suppression occurred primarily through stimulation of serotonin receptor 5-HT1A. Additional studies of K+ levels showed that Dube3a regulation of the Na+/K+ exchanger ATPα (adenosine triphosphatase α) in glia may be modulated by serotonin/dopamine signaling, causing seizure suppression. CONCLUSIONS Based on these pharmacological and genetic studies, we present an argument for the use of 5-HT1A agonists in the treatment of Dup15q epilepsy.
Collapse
|
2
|
Terland O, Flatmark T. Energy-dependent accumulation of calcium antagonists in catecholamine storage vesicles. Biochem Pharmacol 2000; 59:123-9. [PMID: 10810446 DOI: 10.1016/s0006-2952(99)00307-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The calcium antagonists verapamil, nitrendipine, mibefradil, and amlodipine accumulate in chromaffin granule ghosts with apparent equilibrium partition coefficients [(mol/mg membrane lipid)/(mol/mg solvent water)] of 246 +/- 105 (N = 8), 2700 +/- 600 (N = 4), 7400 +/- 2200 (N = 4), and 8100 +/- 1100 (N = 5), respectively. In the presence of 1.2 mM MgATP, the partition coefficients were 854 +/- 206 (N = 10), 2300 +/- 600 (N = 4), 32,700 +/- 8,900 (N = 7), and 20,300 +/- 5,000 (N = 11) for verapamil, nitrendipine, mibefradil, and amlodipine, respectively. Except for nitrendipine, the apparent partition coefficients in the presence of MgATP were significantly different from the control (P < 0.001). For amlodipine and verapamil, the vacuolar H(+)-ATPase inhibitors bafilomycin A1 (30 nM) and N-ethylmaleimide (2 mM) and the protonophore (uncoupler) carbonyl cyanide m-chlorophenylhydrazone (CCCP, 10 microM) completely blocked the increase in partition coefficients in response to MgATP. The extra amlodipine, mibefradil, and verapamil that accumulated in response to MgATP were released into the medium by CCCP (10 microM) by 18% (N = 5), 30% (N = 5), and 88% (N = 5) for amlodipine, mibefradil, and verapamil, respectively. Thus, amlodipine, mibefradil, and verapamil, but not nitrendipine, accumulate in catecholamine storage vesicles in response to delta mu H+ generated by the endogenous V-type H(+)-ATPase, and are partially released by de-energetisation. Hence, these calcium antagonists can reach unexpectedly high concentrations in certain target cells, and give pharmacodynamic properties not shared by nitrendipine.
Collapse
Affiliation(s)
- O Terland
- Department of Biochemistry and Molecular Biology, University of Bergen, Norway
| | | |
Collapse
|
3
|
Terland O, Flatmark T. Drug-induced parkinsonism: cinnarizine and flunarizine are potent uncouplers of the vacuolar H+-ATPase in catecholamine storage vesicles. Neuropharmacology 1999; 38:879-82. [PMID: 10465691 DOI: 10.1016/s0028-3908(98)00233-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cinnarizine (1-diphenylmethyl-4-(3-phenyl-2-propenyl)piperazine) and its di-fluorinated derivative flunarizine inhibit the MgATP-dependent generation of a transmembrane proton electrochemical gradient in chromaffin granule ghosts. The concentrations giving 50% inhibition (IC50) of the MgATP-dependent generation of the pH-gradient were 5.9+/-0.6 microM (n = 6) and 3.0+/-0.3 microM (n = 5) for cinnarizine and flunarizine, respectively. The IC50 values for inhibiting the generation of the membrane potential were even lower, i.e. 0.19+/-0.06 microM (n = 6) and 0.15+/-0.01 microM (n = 4) for cinnarizine and flunarizine, respectively. Cinnarizine (10 microM) also inhibited the energy-dependent vesicular uptake of [14C]-dopamine (50 microM) by 76%, i.e. from 2.1+/-0.9 to 0.5+/-0.6 nmol/mg protein/min (n = 5, P < 0.002). Cinnarizine (10 microM) increased the MgATPase activity of the granule ghosts by 47+/-26% (n = 4) compatible with an uncoupling of the vacuolar H+-ATPase activity. The IC50-values observed for the two compounds are in the same range as their reported therapeutic plasma concentrations in vivo, suggesting that cinnarizine and flunarizine may well inhibit proton pumping and catecholamine uptake in storage vesicles also in vivo. This mechanism of action may contribute to the drug-induced parkinsonism seen as a side-effect of the two drugs.
Collapse
Affiliation(s)
- O Terland
- Department of Biochemistry and Molecular Biology, University of Bergen, Norway
| | | |
Collapse
|
4
|
Prenylamine derivatives as blockers of the vesicular transporter for dopamine. A quantitative structure-activity study. Eur J Med Chem 1997. [DOI: 10.1016/s0223-5234(97)84361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Shintani F, Kinoshita T, Kanba S, Ishikawa T, Suzuki E, Sasakawa N, Kato R, Asai M, Nakaki T. Bioactive 6-nitronorepinephrine identified in mammalian brain. J Biol Chem 1996; 271:13561-5. [PMID: 8662880 DOI: 10.1074/jbc.271.23.13561] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Norepinephrine (NE) (von Euler, U. S. (1972) in Catecholamines (Blaschko, H., and Muscholl, E., eds.) pp. 186-230, Springer-Verlag, Berlin) and nitric oxide (NO.) function as neurotransmitters in the nervous system. We have shown that NE levels in the rat hypothalamic paraventricular nucleus (Shintani, F., Kato, R., Kinoshita, N., Kanba, S., Asai, M., and Nakaki, T.(1995) Proceedings of the Satellite Symposium, 4th IBRO World Congress on Neuroscience, Otsu, 1995) diminish in the presence of NO.. This observation prompted us to explore the possibility of an in vivo interaction between NE and NO. or NO.-related molecules. In fact, nitration of NE has been shown to occur in vitro (d'Ischia, M., and Costantini, C. (1995) Bioorg. Med. Chem. 3, 923-927). We now report the identification of 6-nitronorepinephrine in the mammalian brain. Amounts of 6-nitronorepinephrine in the rat brain were attenuated by intraperitoneal administration of an inhibitor of nitric oxide synthase, NG-nitro-L-arginine methyl ester (L-NAME). This was reversed by coadministration of L-arginine, suggesting that nitric oxide synthase participated in the formation of 6-nitronorepinephrine. Moreover, we found that 6-nitronorepinephrine inhibits the activity of catechol O-methyltransferase, as well as NE transport into rat synaptosomes. A rat brain microdialysis experiment showed that perfusion of 6-nitronorepinephrine into the rat paraventricular nucleus significantly elevated NE while decreasing 3-methoxy-4-hydroxyphenylglycol and that L-NAME administered intraperitoneally decreased NE and increased 3-methoxy-4-hydroxyphenylglycol. These observations suggest that 6-nitronorepinephrine generated in nuclei containing both adrenergic and nitrergic neurons inhibits NE inactivation. We propose that 6-nitronorepinephrine is a potential signal molecule linking the actions of NE and NO..
Collapse
Affiliation(s)
- F Shintani
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Rodrigo J, Springall DR, Uttenthal O, Bentura ML, Abadia-Molina F, Riveros-Moreno V, Martínez-Murillo R, Polak JM, Moncada S. Localization of nitric oxide synthase in the adult rat brain. Philos Trans R Soc Lond B Biol Sci 1994; 345:175-221. [PMID: 7526408 DOI: 10.1098/rstb.1994.0096] [Citation(s) in RCA: 313] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The distribution of the immunoreactivity to nitric oxide synthase has been examined from rostral to caudal areas of the rat central nervous system using light microscopy. Endogenous nitric oxide synthase was located using a specific polyclonal antiserum, produced against affinity purified nitric oxide synthase from whole rat brain, following the avidin-biotin peroxidase procedure. Immunoreactive cell bodies and processes showed a widespread distribution in the brain. In the telencephalon, immunoreactive structures were distributed in all areas of the cerebral cortex, the ventral endopiriform nucleus and claustrum, the main and accessory olfactory bulb, the anterior and posterior olfactory nuclei, the precommisural hippocampus, the taenia tecta, the nucleus accumbens, the stria terminalis, the caudate putamen, the olfactory tubercle and islands of Calleja, septum, globus pallidus and substantia innominata, hippocampus and amygdala. In the diencephalon, the immunoreactivity was largely found in both the hypothalamus and thalamus. In the hypothalamus, immunoreactive cell bodies were characteristically located in the perivascular-neurosecretory systems and mamillary bodies. In addition, immunoreactive nerve fibres were detected in the median eminence of the infundibular stem. The mesencephalon showed nitric oxide synthase immunoreactivity in the ventral tegmental area, the interpeduncular nucleus, the rostral linear nucleus of the raphe and the dorsal raphe nucleus. Immunoreactive structures were also found in the nuclei of the central grey, the peripeduncular nucleus and substantia nigra pars lateralis, the geniculate nucleus and in the superior and inferior colliculi. The pons displayed immunoreactive structures principally in the pedunculopontine and laterodorsal tegmental nuclei, the ventral tegmental nucleus, the reticulotegmental pontine nucleus, the parabrachial nucleus and locus coeruleus. In the medulla oblongata, immunoreactive neurons and processes were detected in the principal sensory trigeminal nucleus, the trapezoid body, the raphe magnus, the pontine reticular nuclei, the supragenual nucleus, the prepositus hypoglossal nucleus, the medial and spinal vestibular nuclei, the dorsal cochlear nucleus, the medullary reticular field, the nucleus of the solitary tract, the gracile and cuneate nuclei, the dorsal nucleus of the vagus nerve and the oral, interpolar and caudal parts of the spinal trigeminal nucleus. In the cerebellum, the stellate and basket cells showed immunoreactivity, which was also seen in the basket terminal fibres of the Purkinje cell layer. Isolated immunoreactive Purkinje cells were found in the vermis and parafloccular regions of the cerebellum. In the granular layer of the cerebellum, the granular cells and glomeruli were also immunoreactive. Numerous positive varicose nerve fibres and occasional neurons were also found in the lateral and interposed cerebellar nuclei.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Rodrigo
- Department of Comparative Neuroanatomy, Instituto de Neurobiología Santiago Ramón y Cajal, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Vaccari A, Saba P, Gessa G. Potent, extra-channel influence of several calcium-channel modulators on striatal binding of [3H]tyramine. Neurochem Res 1993; 18:1125-30. [PMID: 8255363 DOI: 10.1007/bf00978362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A number of Ca(2+)-, K(+)-, and Na(+)-channel modulators has been tested with respect to their effects on [3H]tyramine (TY) binding, as a putative marker for the vesicular dopamine (DA) transporter in striatal membrane preparations containing vesicle ghosts. Among organic Ca(2+)-channel modulators, the diphenylalkylamines tested consistently inhibited TY binding: the order of potency was prenylamine > lidoflazine > flunarizine > cinnarizine, with Ki values of 0.1, 0.2, 0.5 and 1.2 microM, respectively. Low (up to 100 nM) concentrations of prenylamine did competitively inhibit TY binding, and higher concentrations provoked a mixed-type inhibition. Furthermore, LIGAND-analysis of competition curves revealed a high- and a low-affinity binding site for prenylamine and flunarizine. The TY binding process was also sensitive to selected K(+)- and Na(+)-channel modulators. Since several Ca(2+)-antagonists are known to affect H(+)-ATPase and the bioenergetics of catecholamine storage vesicles in chromaffin granules, thus affecting monoamine storage, the energy requirements for the formation of the TY/carrier complex were here assessed, assuming similarity between chromaffin granules and synaptic vesicles. TY binding, though not reflecting endovesicle-sequestered TY, was indeed strongly sensitive (with Ki coefficients in the fM or low nM range) to the dissipation of the vesicular transmembrane proton concentration (delta pH), electrical (delta psi), and proton electrochemical (delta microH+) gradients, provoked by a number of specifically targeted agents. It is concluded that Ca(2+)-channel agents of the diphenylalkylamine group may directly affect striatal TY binding due to an extrachannel-regulated competition with TY for the vesicular carrier of DA, as well indirectly, by disruption of the transmembrane energization of the reserpine-sensitive carrier.
Collapse
Affiliation(s)
- A Vaccari
- Department of Neuroscience B. Brodie, Cagliari, Italy
| | | | | |
Collapse
|
8
|
Abstract
The [3H]Tyramine (TY) binding site is proposed as a high affinity marker of the membrane carrier for dopamine (DA) in synaptic vesicles from DA-rich brain regions. Under precise assay conditions, there is neither a consistent association of TY with the neuronal, cocaine-sensitive DA transporter, nor with mitochondrial or microsomal targets. TY-labeled sites have a high affinity for selected toxins such as the Parkinsonian agent MPP+ (1-methyl-4-phenylpyridinium ion), or drugs such as diphenylalkylamine Ca(2+)-channel antagonists. The MPP+/TY site interaction, which in the striatum leads to depletion of vesicular DA, occurs in dopaminergic as well as in noradrenergic regions, though with different kinetic profiles. TY-labeled carriers for DA and noradrenaline (NA) in respective vesicles seem to be different entities, which might result in a region-specific rate of toxin sequestration and/or release from heterogeneous vesicles. Whereas MPP+ is a potent competitive-type inhibitor of [3H]TY binding, prenylamine-like Ca(2+)-channel antagonists can compete with TY for the vesicle site, in a tetrabenazine- or reserpine-like manner, and also inhibit TY binding thanks to the extra-channel directed impairment of membrane bioenergetics they are proposed to provoke. This follows from the generally-accepted assumption that similar mechanisms are operational for secretory organelles in adrenals and CNS, and from the marked sensitivity of TY binding to miscellaneous energy-disrupting agents.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Vaccari
- Department of Neuroscience, B. Brodie, Cagliari, Italy
| |
Collapse
|
9
|
Terland O, Grønberg M, Flatmark T. The effect of calcium channel blockers on the H(+)-ATPase and bioenergetics of catecholamine storage vesicles. Eur J Pharmacol 1991; 207:37-41. [PMID: 1833213 DOI: 10.1016/s0922-4106(05)80035-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A number of commonly used calcium channel blockers have been compared with respect to their effects on the bioenergetics of catecholamine storage vesicles. Chromaffin granule ghosts with a well-preserved ability to actively transport and store catecholamines, were used as a model for adrenergic synaptic vesicles due to their functional similarity. Nicardipine, verapamil, terodiline and diltiazem were found to have effects comparable to that of prenylamine (Grønberg, M., O. Terland, E.S. Husebye and T. Flatmark, 1990. Biochem. Pharmacol. 40, 351) by inhibiting the generation of a transmembrane proton electrochemical gradient driven by the vesicular H(+)-ATPase, mainly by loose-coupling/uncoupling of this ATPase. Amlodipine inhibited the internal acidification of the vesicles in a tyramine-like manner and increased the steady-state membrane potential (positive inside) generated by the MgATP-dependent proton translocation. Nifedipine and felodipine also inhibited the efficiency of the proton pump, but their mechanisms of action require further investigation. The concentrations giving 50% inhibition of the H(+)-ATPase-dependent generation of a pH-gradient were found to be: 12 microM felodipine, 16 microM nicardipine, 25 microM terodiline, 50 microM nifedipine, 60 microM verapamil, 65 microM amlodipine and 150 microM diltiazem. The effects of the calcium channel blockers on the bioenergetics of chromaffin granules explain the release of catecholamines from sympathetic nerves and ganglia in vitro by the calcium channel blockers.
Collapse
Affiliation(s)
- O Terland
- Department of Biochemistry, University of Bergen, Norway
| | | | | |
Collapse
|