Wu J, Danielsson A, Lindström P, Karlsson K, Sehlin J. Protective effects of calcium channel blockers on acute bromobenzene toxicity to isolated rat hepatocytes. Inhibition of phenylephrine-induced calcium oscillations.
Scand J Gastroenterol 1995;
30:590-600. [PMID:
7569769 DOI:
10.3109/00365529509089795]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND METHODS
Protective effects of verapamil, nifedipine, diltiazem, and ethylene glycol tetraacetic acid (EGTA) on acute bromobenzene (BB) toxicity to rat hepatocytes were evaluated, and cytosolic [Ca2+]i was monitored in single BB-exposed rat hepatocytes. Additionally, the effect of nifedipine on phenylephrine-stimulated calcium oscillations was investigated.
RESULTS
BB at 0.8-2.4 mM increased the lactate dehydrogenase (LDH) leakage rate dose-dependently. Pretreatment with verapamil (25-35 microM), nifedipine (35-45 microM), diltiazem (25 microM), or EGTA (1.5-5 mM) markedly attenuated the BB-induced (1.6 mM) LDH leakage rate during 2 h of incubations. BB did not cause any detectable acute change in [Ca2+]i. BB interfered with phenylephrine-stimulated calcium oscillations, by blocking the oscillations in 58% of the cells and reducing the oscillation frequency in the rest. Nifedipine (100 and 200 microM) blocked the phenylephrine-induced calcium oscillations completely in 55% and 88% of the cells, respectively.
CONCLUSIONS
The findings demonstrate that verapamil, nifedipine, diltiazem, and EGTA significantly protect rat hepatocytes against BB toxicity. BB interferes with phenylephrine-stimulated calcium oscillations. Nifedipine inhibits the oscillations at doses higher than those exerting a protective effect.
Collapse