1
|
Chen YL, Chiu HT. Trichodiene Synthase: Synthesis and Inhibition Kinetics of 12-Fluoro-farnesylphosphonophosphate for Sesquiterpene Cyclases. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200600154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
2
|
Doláková P, Dračínský M, Fanfrlík J, Holý A. Synthesis of Analogues of Acyclic Nucleoside Diphosphates Containing a (Phosphonomethyl)phosphanyl Moiety and Studies of Their Phosphorylation. European J Org Chem 2009. [DOI: 10.1002/ejoc.200800911] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
3
|
Graham SL. Review Oncologic, Endocrine & Metabolic: Inhibitors of protein farnesylation: A new approach to cancer chemotherapy. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.5.12.1269] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Lane KT, Beese LS. Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res 2006; 47:681-99. [PMID: 16477080 DOI: 10.1194/jlr.r600002-jlr200] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
More than 100 proteins necessary for eukaryotic cell growth, differentiation, and morphology require posttranslational modification by the covalent attachment of an isoprenoid lipid (prenylation). Prenylated proteins include members of the Ras, Rab, and Rho families, lamins, CENPE and CENPF, and the gamma subunit of many small heterotrimeric G proteins. This modification is catalyzed by the protein prenyltransferases: protein farnesyltransferase (FTase), protein geranylgeranyltransferase type I (GGTase-I), and GGTase-II (or RabGGTase). In this review, we examine the structural biology of FTase and GGTase-I (the CaaX prenyltransferases) to establish a framework for understanding the molecular basis of substrate specificity and mechanism. These enzymes have been identified in a number of species, including mammals, fungi, plants, and protists. Prenyltransferase structures include complexes that represent the major steps along the reaction path, as well as a number of complexes with clinically relevant inhibitors. Such complexes may assist in the design of inhibitors that could lead to treatments for cancer, viral infection, and a number of deadly parasitic diseases.
Collapse
Affiliation(s)
- Kimberly T Lane
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
5
|
Zgani I, Menut C, Seman M, Gallois V, Laffont V, Liautard J, Liautard JP, Criton M, Montero JL. Synthesis of prenyl pyrophosphonates as new potent phosphoantigens inducing selective activation of human Vgamma9Vdelta2 T lymphocytes. J Med Chem 2004; 47:4600-12. [PMID: 15317470 DOI: 10.1021/jm049861z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gamma9delta2T cells represent the most abundant population of human blood gammadeltaT lymphocytes. They produce and promote strong cytotoxic activity against many pathogens that are implicated in several human infectious diseases. Their activation requires their exposure to small phosphorus-containing antigens in the family of prenyl pyrophosphates and their related biosynthetic precursors such as isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which are naturally occurring metabolites in mycobacteria and several other microbial pathogens. The broad specificity in the recognition of these molecules by the T-lymphocyte population expressing a Vgamma9Vdelta2 cell receptor might facilitate their manipulation by designing small potent synthetic agonist ligands. In this paper, we describe the synthesis and the biological evaluation of new pyrophosphonate compounds as new isosteric analogues of natural prenyl pyrophosphates. Several prenyl and alkenyl pyrophosphonate with different chain lengths and degrees of insaturation (24-28, 48-50, and 64-66) were tested as well as the alkoxymethylpyrophosphonic analogue of IPP (compound 76) as its closest isostere. Several of them appeared to be better activators of Vgamma9Vdelta2 T cell proliferation than IPP. These results open the perspective of a potential use of isoprenoides pyrophosphonates as specific immunoregulatory molecules.
Collapse
Affiliation(s)
- Ibrahim Zgani
- LCBM, UMR 5032, Université Montpellier II, CNRS, MAYOLY-SPINDLER, 8 Rue de l'Ecole Normale, 34296 Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
El Oualid F, Burm BEA, Leroy IM, Cohen LH, van Boom JH, van den Elst H, Overkleeft HS, van der Marel GA, Overhand M. Design, Synthesis, and Evaluation of Su- gar Amino Acid Based Inhibitors of Pro- tein Prenyl Transferases PFT and PGGT-1. J Med Chem 2004; 47:3920-3. [PMID: 15267228 DOI: 10.1021/jm049927q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eleven analogues of the C-terminal Ca(1)a(2)X motif found in natural substrates of the prenyl transferases PFT and PGGT-1 were synthesized and evaluated for their inhibition potency and selectivity against PFT and PGGT-1. Replacement of the central dipeptide part a(1)a(2) by a benzylated sugar amino acid resulted in a good and highly selective PFT inhibitor (8, IC(50) = 250 +/- 20 nM). The methyl ester of 8 (13) selectively inhibited protein farnesylation in cultured cells.
Collapse
Affiliation(s)
- Farid El Oualid
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Fairlamb IJS, Dickinson JM, O'Connor R, Cohen LH, van Thiel CF. Synthesis and antimicrobial evaluation of farnesyl diphosphate mimetics. Bioorg Chem 2003; 31:80-97. [PMID: 12697170 DOI: 10.1016/s0045-2068(03)00025-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The synthesis and first antimicrobial evaluation of farnesyl diphosphate mimetics are described. Several analogues (10, 12, 13, and 20) are inhibitors of Candida albicans, Shizosaccharomyces pombe, and Saccharomyces cerevisiae. The activities of analogues 10, 12, and 13, which contain a omega-phenyl moiety and a diphosphate isostere, are not attributable to inhibition of sterol biosynthesis via squalene synthase. Two geranyl phenylsulphones (14 and 15) are potent inhibitors of Escherichia coli. Analogue 15 exhibits potent activity towards Salmonella typhimurium and Pseudomonas aeruginosa (MIC-2 microg/mL) and represents the first type of semi-synthetic terpenoid allylic sulphone active against these bacteria.
Collapse
Affiliation(s)
- Ian J S Fairlamb
- Department of Chemistry and Materials, John Dalton Building, The Manchester Metropolitan University, Chester Street, Manchester M20 5GD, UK.
| | | | | | | | | |
Collapse
|
8
|
Zgani I, Menut C, Montéro JL. Synthesis of vinyl pyrophosphonate analogues of farnesyl pyrophosphate: New potential inhibitors of farnesyl protein transferase. HETEROATOM CHEMISTRY 2002. [DOI: 10.1002/hc.10081] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Mu Y, Eubanks LM, Poulter CD, Gibbs RA. Coupling of isoprenoid triflates with organoboron nucleophiles: synthesis and biological evaluation of geranylgeranyl diphosphate analogues. Bioorg Med Chem 2002; 10:1207-19. [PMID: 11886785 DOI: 10.1016/s0968-0896(01)00390-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Suzuki coupling reaction has been used to introduce a methyl group derived from commercially available methylboronic acid into a vinyl triflate. This has led to a concise synthesis of all-trans-geranylgeraniol, with the key step being the palladium-catalyzed, silver-mediated methylation of triflate to give ethyl geranylgeranoate. This coupling protocol has also been used to produce the novel geranylgeranyl diphosphate (GGPP) analogue 3-phenyl-3-desmethylgeranylgeranyl diphosphate (3-PhGGPP, ). Our previously developed organocuprate coupling protocol has been used to introduce the cyclopropyl and tert-butyl moieties into the 3-position of vinyl triflate. The four GGPP analogues 3-vinyl-3-desmethylgeranylgeranyl diphosphate (3-vGGPP, ), 3-cyclopropyl-3-desmethylgeranylgeranyl diphosphate (3-cpGGPP, ), 3-tert-butyl-3-desmethyl-geranylgeranyl diphosphate (3-tbGGPP, ), and were then evaluated as potential inhibitors of recombinant yeast protein-geranylgeranyl transferase I (PGGTase I). The potential mechanism-based inhibitors 3-vGGPP and 3-cpGGPP did not exhibit time-dependent inactivation of PGGTase I. Instead, both analogues were alternative substrates, in accord with the interaction of the corresponding farnesyl analogues 3-vFPP and 3-cpFPP with PFTase. The tert-butyl and phenyl analogues were not substrates, but were instead competitive inhibitors of PGGTase I. Note that all four of the GGPP analogues were bound less tightly by the enzyme than the natural substrate, in contrast to the behavior of the 3-substituted FPP analogues.
Collapse
Affiliation(s)
- YongQi Mu
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
10
|
Cohen LH, Pieterman E, van Leeuwen RE, Overhand M, Burm BE, van der Marel GA, van Boom JH. Inhibitors of prenylation of Ras and other G-proteins and their application as therapeutics. Biochem Pharmacol 2000; 60:1061-8. [PMID: 11007942 DOI: 10.1016/s0006-2952(00)00386-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anchoring of small G-proteins to cellular membranes via a covalently bound lipophylic prenyl group is essential for the functioning of these proteins. For example, the farnesylation of Ras by the action of the enzyme protein:farnesyl transferase (PFT) is pivotal for its signalling function in cell growth and differentiation. The development of inhibitors of PFT was triggered by the role of mutated Ras in certain types of cancer and by the observation that non-farnesylated Ras is inactive. Besides the screening of existing compounds for PFT inhibition, rational drug design has also led to new inhibitors. Our research is in the field of atherosclerosis and concerns the development of inhibitors of the growth of vascular smooth muscle cells. The latter process gives rise to reocclusion of the coronary artery (restenosis) after balloon angioplasty. We and others have developed several analogues of the two substrates of PFT, i.e. farnesyl pyrophosphate (FPP) and the so-called CAAX peptide consensus sequence, which were tested in vitro for the inhibition of PFT and of other enzymes involved in protein prenylation, such as protein:geranylgeranyl transferase-1 (PGGT-1). The FPP analogue TR006, a strong inhibitor of PFT (IC(50) of 67 nM), blocked the proliferation of cultured human smooth muscle cells and inhibited platelet-derived growth factor- and basic fibroblast growth factor-induced DNA synthesis. Similar but more highly charged compounds failed in this respect, probably because of an impaired uptake in the cells. Less charged derivatives were designed to circumvent this problem. The effect on the GF-induced activation of intermediates in signal transduction pathways was investigated in order to gain insight into the mechanism of action within the cells. TR006 decreased the bFGF activation of extracellular signal-regulated kinase 1 (ERK1), suggesting its involvement in inhibiting Ras activity. Although other analogues inhibited DNA synthesis, they affected neither ERK1 activation nor p38/stress-activated protein kinase 2 or Jun N-terminal kinase 1 activation. Since some of these compounds were also shown to be inhibitors of in vitro PGGT-1 activity, the geranylgeranylation of other G-proteins may be decreased by these compounds. Rho seems to be a good candidate as a target for inhibitors of PGGT-1. This uncertainty as to the mechanism of action within non-transformed as well as transformed cells applies to all prenylation inhibitors, but is not holding back their further development as drugs. Their current and possible future application as therapeutics in cancer, restenosis, angiogenesis, and osteoporosis is briefly discussed.
Collapse
Affiliation(s)
- L H Cohen
- Gaubius Laboratory, TNO Prevention and Health, Leiden University, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
11
|
Rozema DB, Poulter CD. Yeast protein farnesyltransferase. pKas of peptide substrates bound as zinc thiolates. Biochemistry 1999; 38:13138-46. [PMID: 10529185 DOI: 10.1021/bi990794y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein farnesyltransferase (PFTase) is a zinc metalloenzyme that catalyzes the posttranslational alkylation of the cysteine in C-terminal -Ca(1)a(2)X sequences by a 15-carbon farnesyl residue, where C is cysteine, a(1) and a(2) are normally aliphatic amino acids, and X is an amino acid that specifies selectivity for the farnesyl moiety. Formation of a Zn(2+) thiolate in the PFTase. peptide complex was detected by the appearance of an absorbance at 236 nm (epsilon = 15 000 M(-1) cm(-1)), which was dependent on the concentration of peptide, in a UV difference spectrum in a solution of PFTase and the peptide substrate RTRCVIA. We developed a fluorescence anisotropy binding assay to measure the dissociation constants as a function of pH for peptide analogues by appending a 2',7'-difluorofluorescein to their N-terminus. The electron-withdrawing fluorine atoms allowed us to measure peptide binding down to pH 5.5 without having to correct for the changes in fluorescence intensity that accompany protonation of the fluorophore. Measurements of the pK(a)s for thiol groups in free and bound peptide indicate that peptide binding is accompanied by formation of a zinc thiolate and that binding to PFTase lowers the pK of the peptide thiol by 3 units. In similar studies with the betaY310F mutant, the pK(a) of the thiol moiety was lowered by 2 units upon binding, indicating that the hydroxyl group in the conserved tyrosine helps stabilize the bound thiolate.
Collapse
Affiliation(s)
- D B Rozema
- Department of Chemistry, University of Utah, Salt Lake City 84112, USA
| | | |
Collapse
|
12
|
Overkleeft HS, Verhelst SH, Pieterman E, Meeuwenoord NJ, Overhand M, Cohen LH, van der Marel GA, van Boom JH. Design and synthesis of a protein:Farnesyltransferase inhibitor based on sugar amino acids. Tetrahedron Lett 1999. [DOI: 10.1016/s0040-4039(99)00697-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Cohen LH, Pieterman E, van Leeuwen RE, Du J, Negre-Aminou P, Valentijn AR, Overhand M, van der Marel GA, van Boom JH. Inhibition of human smooth muscle cell proliferation in culture by farnesyl pyrophosphate analogues, inhibitors of in vitro protein: farnesyl transferase. Biochem Pharmacol 1999; 57:365-73. [PMID: 9933024 DOI: 10.1016/s0006-2952(98)00322-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, it was investigated whether and how inhibitors of protein:farnesyl transferase (PFT) can inhibit the proliferation of human smooth muscle cells (HSMC) in culture. Several farnesyl pyrophosphate (FPP) analogues were synthesized and tested in vitro for their specificity in inhibiting squalene synthase (SS), PFT, or protein:geranylgeranyl transferase-1 (PGGT-1) activities (the latter was determined using a newly designed assay). One of these compounds appeared to be a strong PFT inhibitor (IC50 value: 340 nM) and a weak inhibitor in the other two enzyme assays. This compound (designated as TR006) inhibited the farnesylation of Ras in a Ha-ras transfected cell line (Cohen et al., Biochem. Phamacol. 49: 839-845, 1995) and concomitantly slowed down the growth of these cells. Twenty-five microM of TR006 inhibited the proliferation of HSMC isolated from left internal mammary artery, as measured by counting the cells over a period of three cell cycles (10 days). A structurally related compound (TR007), a specific SS inhibitor, did not influence HSMC proliferation under the same conditions. The inhibition by TR006 was concentration-dependent. In HSMC, synchronized by serum depletion, platelet-derived growth factor (PDGF) or basic fibroblast growth factor (bFGF)-induced DNA synthesis was decreased by a 29-hr pretreatment with 100 microM of TR006, indicating that this inhibitor acted in an early phase of the cell cycle, probably by preventing protein isoprenylation. Some other FPP analogues with comparable IC50 values in the in vitro PFT assay were also able to decrease bFGF-induced DNA synthesis without affecting cell viability. A more negatively charged member of this group, TR018, did not influence the growth factor-induced DNA synthesis, probably due to an impaired uptake into the cells. However, the pivaloyloxomethyl derivative of this compound, which is uncharged, and is thought to be converted into TR018 within the cells, showed a strong decrease in bFGF-induced DNA synthesis in HSMC. These data suggest that the compounds investigated may be developed further for treatment of conditions in which undesirable proliferation of smooth muscle cells plays an important role.
Collapse
Affiliation(s)
- L H Cohen
- Gaubius Laboratory, TNO Prevention and Health, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Eummer JT, Gibbs BS, Zahn TJ, Sebolt-Leopold JS, Gibbs RA. Novel limonene phosphonate and farnesyl diphosphate analogues: design, synthesis, and evaluation as potential protein-farnesyl transferase inhibitors. Bioorg Med Chem 1999; 7:241-50. [PMID: 10218815 DOI: 10.1016/s0968-0896(98)00202-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Limonene and its metabolite perillyl alcohol are naturally-occurring isoprenoids that block the growth of cancer cells both in vitro and in vivo. This cytostatic effect appears to be due, at least in part, to the fact that these compounds are weak yet selective and non-toxic inhibitors of protein prenylation. Protein-farnesyl transferase (FTase), the enzyme responsible for protein farnesylation, has become a key target for the rational design of cancer chemotherapeutic agents. Therefore, several alpha-hydroxyphosphonate derivatives of limonene were designed and synthesized as potentially more potent FTase inhibitors. A noteworthy feature of the synthesis was the use of trimethylsilyl triflate as a mild, neutral deprotection method for the preparation of sensitive phosphonates from the corresponding tert-butyl phosphonate esters. Evaluation of these compounds demonstrates that they are exceptionally poor FTase inhibitors in vitro (IC50 > or = 3 mM) and they have no effect on protein farnesylation in cells. In contrast, farnesyl phosphonyl(methyl)phosphinate, a diphosphate-modified derivative of the natural substrate farnesyl diphosphate, is a very potent FTase inhibitor in vitro (Ki=23 nM).
Collapse
Affiliation(s)
- J T Eummer
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
15
|
Luckman SP, Coxon FP, Ebetino FH, Russell RG, Rogers MJ. Heterocycle-containing bisphosphonates cause apoptosis and inhibit bone resorption by preventing protein prenylation: evidence from structure-activity relationships in J774 macrophages. J Bone Miner Res 1998; 13:1668-78. [PMID: 9797474 DOI: 10.1359/jbmr.1998.13.11.1668] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent evidence suggests that bisphosphonates (BPs) may inhibit bone resorption by mechanisms that lead to osteoclast apoptosis. We have previously shown that BPs also reduce cell viability and induce apoptosis in the macrophage-like cell line J774. To determine whether BPs inhibit osteoclast-mediated bone resorption and affect J774 macrophages by the same molecular mechanism, we examined the potency to reduce J774 cell viability of pairs of nitrogen-containing BPs that differ slightly in the structure of the heterocycle-containing side chain but that differ markedly in antiresorptive potency. In all cases, the most potent antiresorptive BP of each pair also caused the greatest loss of J774 viability, while the less potent antiresorptive BPs were also less potent at reducing J774 cell viability. Similarly, the bisphosphinate, phosphonoalkylphosphinate and monophosphonate analogs of BPs (in which one or both phosphonate groups are modified, giving rise to much less potent or inactive antiresorptive agents) were much less potent or inactive at reducing J774 cell viability. Thus, the structure-activity relationships of BPs for inhibiting bone resorption match those for causing loss of cell viability in J774 cells, indicating that BPs inhibit osteoclast-mediated bone resorption and reduce J774 macrophage viability by the same molecular mechanism. Loss of J774 cell viability after treatment with BPs was associated with a parallel increase in apoptotic cell death. We have recently proposed that nitrogen-containing BPs reduce cell viability and cause J774 apoptosis as a consequence of inhibition of enzymes of the mevalonate pathway and hence loss of prenylated proteins. In this study, the BPs that were potent inducers of J774 apoptosis and potent antiresorptive agents were also found to be effective inhibitors of protein prenylation in J774 macrophages, whereas the less potent BP analogs did not inhibit protein prenylation. This provides strong evidence that BPs with a heterocyclic, nitrogen-containing side chain, such as risedronate, inhibit osteoclast-mediated bone resorption and induce J774 apoptosis by preventing protein prenylation.
Collapse
Affiliation(s)
- S P Luckman
- Department of Medicine and Therapeutics, University of Aberdeen, United Kingdom
| | | | | | | | | |
Collapse
|
16
|
Inhibitors of Protein:Farnesyl Transferase and Protein:Geranylgeranyl Transferase I: Synthesis of Homologous Diphosphonate Analogs of Isoprenylated Pyrophosphate. Bioorg Chem 1998. [DOI: 10.1006/bioo.1998.1101] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Long SB, Casey PJ, Beese LS. Cocrystal structure of protein farnesyltransferase complexed with a farnesyl diphosphate substrate. Biochemistry 1998; 37:9612-8. [PMID: 9657673 DOI: 10.1021/bi980708e] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein farnesyltransferase (FTase) catalyzes the transfer of the hydrophobic farnesyl group from farnesyl diphosphate (FPP) to cellular proteins such as Ras at a cysteine residue near their carboxy-terminus. This process is necessary for the subcellular localization of these proteins to the plasma membrane and is required for the transforming activity of oncogenic variants of Ras, making FTase a prime target for anticancer therapeutics. The high-resolution crystal structure of rat FTase was recently determined, and we present here the X-ray crystal structure of the first complex of FTase with a FPP substrate bound at the active site. The isoprenoid moiety of FPP binds in an extended conformation in a hydrophobic cavity of the beta subunit of the FTase enzyme, and the diphosphate moiety binds to a positively charged cleft at the top of this cavity near the subunit interface. The observed location of the FPP molecule is consistent with mutagenesis data. This binary complex of FTase with FPP leads us to suggest a "molecular ruler" hypothesis for isoprenoid substrate specificity, where the depth of the hydrophobic binding cavity acts as a ruler discriminating between isoprenoids of differing lengths. Although other length isoprenoids may bind in the cavity, only the 15-carbon farnesyl moiety binds with its C1 atom in register with a catalytic zinc ion as required for efficient transfer to the Ras substrate.
Collapse
Affiliation(s)
- S B Long
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
18
|
Abstract
The demonstration that Ras requires prenylation for its cancer-causing activity led several groups of investigators to an intense search for farnesyltransferase and geranylgeranyltransferase inhibitors as potential anticancer drugs. Rational design of small organic molecules that mimic the carboxyl terminal tetrapeptide prenylation site on Ras resulted in pharmacological agents capable of inhibiting Ras processing and selectively antagonizing oncogenic signaling, and suppressing human tumor growth in mouse models without side effects. These agents presently are undergoing advanced preclinical studies. This review describes the efforts of several groups to design, synthesize and evaluate the biological activities of several classes of prenyltransferase inhibitors. Several important issues, such as mechanism of action of prenyltransferase inhibitors and potential mechanisms of resistance to inhibition of K-Ras farnesylation, are also discussed.
Collapse
Affiliation(s)
- S M Sebti
- Department of Pharmacology, University of Pittsburgh, PA 15261, USA
| | | |
Collapse
|
19
|
Synthesis of triphosphonate analogues of farnesyl pyrophosphate. Inhibitors of squalene synthase and protein:farnesyl transferase. Bioorg Med Chem Lett 1997. [DOI: 10.1016/s0960-894x(97)00448-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Harwood HJ, Barbacci-Tobin EG, Petras SF, Lindsey S, Pellarin LD. 3-(4-chlorophenyl)-2-(4-diethylaminoethoxyphenyl)-A-pentenonitrile monohydrogen citrate and related analogs. Reversible, competitive, first half-reaction squalene synthetase inhibitors. Biochem Pharmacol 1997; 53:839-64. [PMID: 9113105 DOI: 10.1016/s0006-2952(96)00892-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Squalene synthetase (SQS) catalyzes the head-to-head condensation of two molecules of farnesyl pyrophosphate (FPP) to form squalene. The reaction is unique when compared with those of other FPP-utilizing enzymes, and proceeds in two distinct steps, both of which involve carbocationic reaction intermediates. In this report, we describe the mechanism of action of, and structure-activity relationships within, a series of substituted diethylaminoethoxystilbenes that mimic these reaction intermediates, through characterization of the biochemical properties of 3-(4-chlorophenyl)-2-(4-diethylaminoethoxyphenyl)-A- pentenonitrile monohydrogen citrate (P-3622) and related analogs. As a representative member of this series, P-3622 inhibited SQS reversibly and competitively with respect to FPP (Ki = 0.7 microM), inhibited the enzymatic first half-reaction to the same extent as the overall reaction, exhibited a 300-fold specificity for SQS inhibition relative to protein farnesyltransferase inhibition, inhibited cholesterol synthesis in rat primary hepatocytes (IC50 = 0.8 microM), in cultured human cells (Hep-G2, CaCo-2, and IM-9; IC50 = 0.2, 1.2, and 1.0 microM), and in chow-fed hamsters (62% at 100 mg/kg) without accumulation of post-squalene sterol precursors, and reduced plasma cholesterol in experimental animals. Structure-activity relationships among 72 related analogs suggest that the phenyl residues and central trans-olefin of the stilbene moiety serve as mimics of the three isoprene units of the donor FPP, that substitutions across the central olefin and para-substitutions on the terminal phenyl residue mimic the branching methyl groups of the donor FPP, and that the diethylaminoethoxy moiety of these molecules mimics the various carbocations that develop in the C1-C3 region of the acceptor FPP during reaction. Members of this series of reversible, competitive, first half-reaction SQS inhibitors that show a high degree of specificity for SQS inhibition relative to inhibition of other FPP-utilizing enzymes and other cholesterol synthesis pathway enzymes may serve as useful tools for probing the unique catalytic mechanisms of this important enzyme.
Collapse
Affiliation(s)
- H J Harwood
- Department of Metabolic Diseases, Pfizer Central Research, Pfizer Inc., Groton, CT 06340, USA
| | | | | | | | | |
Collapse
|
21
|
Coleman PS, Chen LC, Sepp-Lorenzino L. Cholesterol metabolism and tumor cell proliferation. Subcell Biochem 1997; 28:363-435. [PMID: 9090301 DOI: 10.1007/978-1-4615-5901-6_13] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- P S Coleman
- Boston Biomedical Research Institute, Laboratory of Metabolic Regulation, MA 02114, USA
| | | | | |
Collapse
|
22
|
Biessen EA, Sliedregt LA, Van Berkel TJ. Approaches for the design of novel anti-atherogenic compounds. Subcell Biochem 1997; 28:507-39. [PMID: 9090305 DOI: 10.1007/978-1-4615-5901-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- E A Biessen
- Division of Biopharmaceutics, Leiden-Amsterdam Center for Drug Research, Sylvius Laboratory, University of Leiden, The Netherlands
| | | | | |
Collapse
|
23
|
Njoroge F, Vibulbhan B, Alvarez CS, Bishop W, Petrin J, Doll RJ, Girijavallabhan V, Ganguly AK. Novel tricyclic aminoacetyl and sulfonamide inhibitors of Ras farnesyl protein transferase. Bioorg Med Chem Lett 1996. [DOI: 10.1016/s0960-894x(96)00558-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Perrin D, Halazy S, Hill BT. Inhibitors of the Ras signal transduction pathway as potential antitumour agents. JOURNAL OF ENZYME INHIBITION 1996; 11:77-95. [PMID: 9204398 DOI: 10.3109/14756369609036536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- D Perrin
- Division de Cancerologie Expérimentale, Centre de Recherche Pierre Fabre, Castres, France
| | | | | |
Collapse
|