1
|
Poole DC, Rossiter HB, Brooks GA, Gladden LB. The anaerobic threshold: 50+ years of controversy. J Physiol 2020; 599:737-767. [PMID: 33112439 DOI: 10.1113/jp279963] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022] Open
Abstract
The anaerobic threshold (AT) remains a widely recognized, and contentious, concept in exercise physiology and medicine. As conceived by Karlman Wasserman, the AT coalesced the increase of blood lactate concentration ([La- ]), during a progressive exercise test, with an excess pulmonary carbon dioxide output ( V ̇ C O 2 ). Its principal tenets were: limiting oxygen (O2 ) delivery to exercising muscle→increased glycolysis, La- and H+ production→decreased muscle and blood pH→with increased H+ buffered by blood [HCO3 - ]→increased CO2 release from blood→increased V ̇ C O 2 and pulmonary ventilation. This schema stimulated scientific scrutiny which challenged the fundamental premise that muscle anoxia was requisite for increased muscle and blood [La- ]. It is now recognized that insufficient O2 is not the primary basis for lactataemia. Increased production and utilization of La- represent the response to increased glycolytic flux elicited by increasing work rate, and determine the oxygen uptake ( V ̇ O 2 ) at which La- accumulates in the arterial blood (the lactate threshold; LT). However, the threshold for a sustained non-oxidative contribution to exercise energetics is the critical power, which occurs at a metabolic rate often far above the LT and separates heavy from very heavy/severe-intensity exercise. Lactate is now appreciated as a crucial energy source, major gluconeogenic precursor and signalling molecule but there is no ipso facto evidence for muscle dysoxia or anoxia. Non-invasive estimation of LT using the gas exchange threshold (non-linear increase of V ̇ C O 2 versus V ̇ O 2 ) remains important in exercise training and in the clinic, but its conceptual basis should now be understood in light of lactate shuttle biology.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, and The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - George A Brooks
- Department of Integrative Biology, Exercise Physiology Laboratory, University of California, Berkeley, CA, USA
| | | |
Collapse
|
2
|
Baltazar F, Afonso J, Costa M, Granja S. Lactate Beyond a Waste Metabolite: Metabolic Affairs and Signaling in Malignancy. Front Oncol 2020; 10:231. [PMID: 32257942 PMCID: PMC7093491 DOI: 10.3389/fonc.2020.00231] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
To sustain their high proliferation rates, most cancer cells rely on glycolytic metabolism, with production of lactic acid. For many years, lactate was seen as a metabolic waste of glycolytic metabolism; however, recent evidence has revealed new roles of lactate in the tumor microenvironment, either as metabolic fuel or as a signaling molecule. Lactate plays a key role in the different models of metabolic crosstalk proposed in malignant tumors: among cancer cells displaying complementary metabolic phenotypes and between cancer cells and other tumor microenvironment associated cells, including endothelial cells, fibroblasts, and diverse immune cells. This cell metabolic symbiosis/slavery supports several cancer aggressiveness features, including increased angiogenesis, immunological escape, invasion, metastasis, and resistance to therapy. Lactate transport is mediated by the monocarboxylate transporter (MCT) family, while another large family of G protein-coupled receptors (GPCRs), not yet fully characterized in the cancer context, is involved in lactate/acidosis signaling. In this mini-review, we will focus on the role of lactate in the tumor microenvironment, from metabolic affairs to signaling, including the function of lactate in the cancer-cancer and cancer-stromal shuttles, as well as a signaling oncometabolite. We will also review the prognostic value of lactate metabolism and therapeutic approaches designed to target lactate production and transport.
Collapse
Affiliation(s)
- Fátima Baltazar
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
| | - Julieta Afonso
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
| | - Marta Costa
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
| | - Sara Granja
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
3
|
Sun S, Li H, Chen J, Qian Q. Lactic Acid: No Longer an Inert and End-Product of Glycolysis. Physiology (Bethesda) 2018; 32:453-463. [PMID: 29021365 DOI: 10.1152/physiol.00016.2017] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 12/21/2022] Open
Abstract
For decades, lactic acid has been considered a dead-end product of glycolysis. Research in the last 20+ years has shown otherwise. Through its transporters (MCTs) and receptor (GPR81), lactic acid plays a key role in multiple cellular processes, including energy regulation, immune tolerance, memory formation, wound healing, ischemic tissue injury, and cancer growth and metastasis. We summarize key findings of lactic acid signaling, functions, and many remaining questions.
Collapse
Affiliation(s)
- Shiren Sun
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xian, China
| | - Heng Li
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; and
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; and
| | - Qi Qian
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
4
|
Ferguson BS, Rogatzki MJ, Goodwin ML, Kane DA, Rightmire Z, Gladden LB. Lactate metabolism: historical context, prior misinterpretations, and current understanding. Eur J Appl Physiol 2018; 118:691-728. [PMID: 29322250 DOI: 10.1007/s00421-017-3795-6] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
Lactate (La-) has long been at the center of controversy in research, clinical, and athletic settings. Since its discovery in 1780, La- has often been erroneously viewed as simply a hypoxic waste product with multiple deleterious effects. Not until the 1980s, with the introduction of the cell-to-cell lactate shuttle did a paradigm shift in our understanding of the role of La- in metabolism begin. The evidence for La- as a major player in the coordination of whole-body metabolism has since grown rapidly. La- is a readily combusted fuel that is shuttled throughout the body, and it is a potent signal for angiogenesis irrespective of oxygen tension. Despite this, many fundamental discoveries about La- are still working their way into mainstream research, clinical care, and practice. The purpose of this review is to synthesize current understanding of La- metabolism via an appraisal of its robust experimental history, particularly in exercise physiology. That La- production increases during dysoxia is beyond debate, but this condition is the exception rather than the rule. Fluctuations in blood [La-] in health and disease are not typically due to low oxygen tension, a principle first demonstrated with exercise and now understood to varying degrees across disciplines. From its role in coordinating whole-body metabolism as a fuel to its role as a signaling molecule in tumors, the study of La- metabolism continues to expand and holds potential for multiple clinical applications. This review highlights La-'s central role in metabolism and amplifies our understanding of past research.
Collapse
Affiliation(s)
- Brian S Ferguson
- College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Matthew J Rogatzki
- Department of Health and Exercise Science, Appalachian State University, Boone, NC, USA
| | - Matthew L Goodwin
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Daniel A Kane
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, Canada
| | - Zachary Rightmire
- School of Kinesiology, Auburn University, 301 Wire Road, Auburn, AL, 36849, USA
| | - L Bruce Gladden
- School of Kinesiology, Auburn University, 301 Wire Road, Auburn, AL, 36849, USA.
| |
Collapse
|
5
|
Abstract
For much of the 20th century, lactate was largely considered a dead-end waste product of glycolysis due to hypoxia, the primary cause of the O2 debt following exercise, a major cause of muscle fatigue, and a key factor in acidosis-induced tissue damage. Since the 1970s, a 'lactate revolution' has occurred. At present, we are in the midst of a lactate shuttle era; the lactate paradigm has shifted. It now appears that increased lactate production and concentration as a result of anoxia or dysoxia are often the exception rather than the rule. Lactic acidosis is being re-evaluated as a factor in muscle fatigue. Lactate is an important intermediate in the process of wound repair and regeneration. The origin of elevated [lactate] in injury and sepsis is being re-investigated. There is essentially unanimous experimental support for a cell-to-cell lactate shuttle, along with mounting evidence for astrocyte-neuron, lactate-alanine, peroxisomal and spermatogenic lactate shuttles. The bulk of the evidence suggests that lactate is an important intermediary in numerous metabolic processes, a particularly mobile fuel for aerobic metabolism, and perhaps a mediator of redox state among various compartments both within and between cells. Lactate can no longer be considered the usual suspect for metabolic 'crimes', but is instead a central player in cellular, regional and whole body metabolism. Overall, the cell-to-cell lactate shuttle has expanded far beyond its initial conception as an explanation for lactate metabolism during muscle contractions and exercise to now subsume all of the other shuttles as a grand description of the role(s) of lactate in numerous metabolic processes and pathways.
Collapse
Affiliation(s)
- L B Gladden
- Department of Health and Human Performance, 2050 Memorial Coliseum, Auburn University, Auburn, AL 36849-5323, USA.
| |
Collapse
|