1
|
Tomatsu S, Kim G, Confais J, Seki K. Muscle afferent excitability testing in spinal root-intact rats: dissociating peripheral afferent and efferent volleys generated by intraspinal microstimulation. J Neurophysiol 2017; 117:796-807. [PMID: 27974451 DOI: 10.1152/jn.00874.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/29/2016] [Indexed: 11/22/2022] Open
Abstract
Presynaptic inhibition of the sensory input from the periphery to the spinal cord can be evaluated directly by intra-axonal recording of primary afferent depolarization (PAD) or indirectly by intraspinal microstimulation (excitability testing). Excitability testing is superior for use in normal behaving animals, because this methodology bypasses the technically challenging intra-axonal recording. However, use of excitability testing on the muscle or joint afferent in intact animals presents its own technical challenges. Because these afferents, in many cases, are mixed with motor axons in the peripheral nervous system, it is crucial to dissociate antidromic volleys in the primary afferents from orthodromic volleys in the motor axon, both of which are evoked by intraspinal microstimulation. We have demonstrated in rats that application of a paired stimulation protocol with a short interstimulus interval (ISI) successfully dissociated the antidromic volley in the nerve innervating the medial gastrocnemius muscle. By using a 2-ms ISI, the amplitude of the volleys evoked by the second stimulation was decreased in dorsal root-sectioned rats, but the amplitude did not change or was slightly increased in ventral root-sectioned rats. Excitability testing in rats with intact spinal roots indicated that the putative antidromic volleys exhibited dominant primary afferent depolarization, which was reasonably induced from the more dorsal side of the spinal cord. We concluded that excitability testing with a paired-pulse protocol can be used for studying presynaptic inhibition of somatosensory afferents in animals with intact spinal roots.NEW & NOTEWORTHY Excitability testing of primary afferents has been used to evaluate presynaptic modulation of synaptic transmission in experiments conducted in vivo. However, to apply this method to muscle afferents of animals with intact spinal roots, it is crucial to dissociate antidromic and orthodromic volleys induced by spinal microstimulation. We propose a new method to make this dissociation possible without cutting spinal roots and demonstrate that it facilitates excitability testing of muscle afferents.
Collapse
Affiliation(s)
- Saeka Tomatsu
- Department of Neurophysiology, National Institute of Neuroscience, Tokyo, Japan; and
| | - Geehee Kim
- Department of Neurophysiology, National Institute of Neuroscience, Tokyo, Japan; and
| | - Joachim Confais
- Department of Neurophysiology, National Institute of Neuroscience, Tokyo, Japan; and
| | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, Tokyo, Japan; and .,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
2
|
Betelli C, MacDermott AB, Bardoni R. Transient, activity dependent inhibition of transmitter release from low threshold afferents mediated by GABAA receptors in spinal cord lamina III/IV. Mol Pain 2015; 11:64. [PMID: 26463733 PMCID: PMC4605127 DOI: 10.1186/s12990-015-0067-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/06/2015] [Indexed: 12/20/2022] Open
Abstract
Background Presynaptic GABAA receptors (GABAARs) located on central terminals of low threshold afferent fibers are thought to be involved in the processing of touch and possibly in the generation of tactile allodynia in chronic pain. These GABAARs mediate primary afferent depolarization (PAD) and modulate transmitter release. The objective of this study was to expand our understanding of the presynaptic inhibitory action of GABA released onto primary afferent central terminals following afferent stimulation. Results We recorded evoked postsynaptic excitatory responses (eEPSCs and eEPSPs) from lamina III/IV neurons in spinal cord slices from juvenile rats (P17–P23, either sex), while stimulating dorsal roots. We investigated time and activity dependent changes in glutamate release from low threshold A fibers and the impact of these changes on excitatory drive. Blockade of GABAARs by gabazine potentiated the second eEPSC during a train of four afferent stimuli in a large subset of synapses. This resulted in a corresponding increase of action potential firing after the second stimulus. The potentiating effect of gabazine was due to inhibition of endogenously activated presynaptic GABAARs, because it was not prevented by the blockade of postsynaptic GABAARs through intracellular perfusion of CsF. Exogenous activation of presynaptic GABAARs by muscimol depressed evoked glutamate release at all synapses and increased paired pulse ratio (PPR). Conclusions These observations suggest that afferent driven release of GABA onto low threshold afferent terminals is most effective following the first action potential in a train and serves to suppress the initial strong excitatory drive onto dorsal horn circuitry.
Collapse
Affiliation(s)
- Chiara Betelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi, 287, 41125, Modena, Italy.
| | - Amy B MacDermott
- Departments of Physiology and Cellular Biophysics, Neuroscience, Columbia University, 630 W. 168th Street, New York, NY, 10032, USA.
| | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi, 287, 41125, Modena, Italy.
| |
Collapse
|
3
|
Quiroz-González S, Segura-Alegría B, Olmos JCG, Jiménez-Estrada I. The effect of chronic undernourishment on the synaptic depression of cutaneous pathways in the rat spinal cord. Brain Res Bull 2012; 89:97-101. [DOI: 10.1016/j.brainresbull.2012.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 06/06/2012] [Accepted: 07/14/2012] [Indexed: 11/26/2022]
|
4
|
Quiróz-González S, Escartín-Pérez RE, Paz-Bermudez F, Segura-Alegría B, Reyes-Legorreta C, Guadarrama-Olmos JC, Florán-Garduño B, Jiménez-Estrada I. Endogenous Content and Release of [3H]-GABA and [3H]-Glutamate in the Spinal Cord of Chronically Undernourished Rat. Neurochem Res 2012; 38:23-31. [DOI: 10.1007/s11064-012-0881-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/31/2012] [Accepted: 08/30/2012] [Indexed: 12/22/2022]
|
5
|
In search of lost presynaptic inhibition. Exp Brain Res 2009; 196:139-51. [PMID: 19322562 DOI: 10.1007/s00221-009-1758-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 02/24/2009] [Indexed: 01/18/2023]
Abstract
This chapter presents an historical review on the development of some of the main findings on presynaptic inhibition. Particular attention is given to recent studies pertaining the differential GABAa control of the synaptic effectiveness of muscle, cutaneous and articular afferents, to some of the problems arising with the identification of the interneurons mediating the GABAergic depolarization of primary afferents (PAD) of muscle afferents, on the influence of the spontaneous activity of discrete sets of dorsal horn neurons on the pathways mediating PAD of muscle and cutaneous afferents, and to the unmasking of the cutaneous-evoked responses in the lumbosacral spinal cord and associated changes in tonic PAD that follow acute and chronic section of cutaneous nerves. The concluding remarks are addressed to several issues that need to be considered to have a better understanding of the functional role of presynaptic inhibition and PAD on motor performance and sensory processing and on their possible contribution to the shaping of a higher coherence between the cortically programmed and the executed movements.
Collapse
|
6
|
Schmidt RF. Presynaptic inhibition in the vertebrate central nervous system. ERGEBNISSE DER PHYSIOLOGIE, BIOLOGISCHEN CHEMIE UND EXPERIMENTELLEN PHARMAKOLOGIE 2006; 63:20-101. [PMID: 4397694 DOI: 10.1007/bfb0047741] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
García CA, Chávez D, Jiménez I, Rudomin P. Effects of spinal and peripheral nerve lesions on the intersegmental synchronization of the spontaneous activity of dorsal horn neurons in the cat lumbosacral spinal cord. Neurosci Lett 2004; 361:102-5. [PMID: 15135904 DOI: 10.1016/j.neulet.2003.12.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the anesthetized and paralyzed cat, spontaneous negative cord dorsum potentials (nCDPs) appeared synchronously in the L3 to S1 segments, both ipsi- and contralaterally. The acute section of both the intact sural and the superficial peroneal nerve increased the variability of the spontaneous nCDPs without affecting their intersegmental coupling. On the other hand, the synchronization between the spontaneous nCDPs recorded in segments L5-L6 was strongly reduced following an interposed lesion of the left (ipsilateral) dorsolateral spinal quadrant and it was almost completely abolished by an additional lesion of the contralateral dorsolateral quadrant at the same level. Our observations support the existence of a system of spontaneously active dorsal horn neurons that is bilaterally distributed along the lumbosacral segments and affects, in a synchronized and organized manner, impulse transmission along many reflex pathways, including those mediating presynaptic inhibition.
Collapse
Affiliation(s)
- C A García
- Department of Physiology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, México D.F. 07300, Mexico
| | | | | | | |
Collapse
|
8
|
Rudomin P, Lomelí J, Quevedo J. Differential modulation of primary afferent depolarization of segmental and ascending intraspinal collaterals of single muscle afferents in the cat spinal cord. Exp Brain Res 2004; 156:377-91. [PMID: 14985894 DOI: 10.1007/s00221-003-1788-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 11/11/2003] [Indexed: 10/26/2022]
Abstract
We examined primary afferent depolarization (PAD) in the anesthetized cat elicited in 109 pairs of intraspinal collaterals of single group I afferents from the gastrocnemius nerve, one of the pair ending in the L3 segment, around the Clarke's column nuclei, and the other in the L6 segment within the intermediate zone. Tests for refractoriness were made to assess whether the responses produced by intraspinal stimulation in the L3 and L6 segments were due to activation of collaterals of the same afferent fiber. PAD in each collateral was estimated by independent computer-controlled measurement of the intraspinal current required to maintain a constant probability of antidromic firing. In most fibers, stimulation of the ipsilateral posterior biceps and semitendinosus (PBSt) nerve with trains of pulses maximal for group I afferents had a qualitatively similar effect but produced a larger PAD in the L6 than in the L3 collaterals. Stimulation of cutaneous nerves (sural and superficial peroneus) with single pulses and of the posterior articular nerve, the ipsilateral reticular formation, nucleus raphe magnus and contralateral motor cortex with trains of pulses often had qualitatively different effects. They could produce PAD and/or facilitate the PBSt-induced PAD in one collateral, and produce PAH and/or inhibit the PAD in the other collateral. These patterns could be changed in a differential manner by sensory or supraspinal conditioning stimulation. In summary, the present investigation suggests that the segmental and ascending collaterals of individual afferents are not fixed routes for information transmission, but parts of dynamic systems in which information transmitted to segmental reflex pathways and to Clarke's column neurons by common sources can be decoupled by sensory and descending inputs and funneled to specific targets according to the motor tasks to be performed.
Collapse
Affiliation(s)
- P Rudomin
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico.
| | | | | |
Collapse
|
9
|
Rudomin P. Central control of information transmission through the intraspinal arborizations of sensory fibers examined 100 years after Ramón y Cajal. PROGRESS IN BRAIN RESEARCH 2002; 136:409-21. [PMID: 12143398 DOI: 10.1016/s0079-6123(02)36033-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
About 100 years ago, Santiago Ramón y Cajal reported that sensory fibers entering the spinal cord have ascending and descending branches, and that each of them sends collaterals to the gray matter where they have profuse ramifications. To him this was a fundamental discovery and proposed that the intraspinal branches of the sensory fibers were "centripetal conductors by which sensory excitation is propagated to the various neurons in the gray matter". In addition, he assumed that "conduction of excitation within the intraspinal arborizations of the afferent fibers would be proportional to the diameters of the conductors", and that excitation would preferentially flow through the coarsest branches. The invariability of some elementary reflexes such as the knee jerk would be the result of a long history of plastic adaptations and natural selection of the safest neuronal organizations. There is now evidence suggesting that in the adult cat, the intraspinal branches of sensory fibers are not hard wired routes that diverge excitation to spinal neurons in an invariable manner, but rather dynamic pathways where excitation flow can be centrally addressed to reach specific neuronal targets. This central control of information flow is achieved by means of specific sets of GABAergic interneurons that produce primary afferent depolarization (PAD) via axo-axonic synapses and reduce transmitter release (presynaptic inhibition). The PAD produced by single, or by small groups of GABAergic interneurons in group I muscle afferents, can remain confined to some sets of intraspinal arborizations of the afferent fibers and not spread to nearby collaterals. In muscle spindle afferents this local character of PAD allows cutaneous and descending inputs to differentially inhibit the PAD in segmental and ascending collaterals of individual fibers, which may be an effective way to decouple the information flow arising from common sensory inputs. This feature appears to play an important role in the selection of information flow in muscle spindles that occurs at the onset of voluntary contractions in humans.
Collapse
Affiliation(s)
- Pablo Rudomin
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, 07000 Mexico D.F., Mexico.
| |
Collapse
|
10
|
Aktivierung axoaxonischer Synapsen durch Salven in afferenten C-Fasern: Manfred Zimmermanns Falsifizierung der Gate-Control-Theorie. Schmerz 1993; 7:262-7. [DOI: 10.1007/bf02529862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Carli G, Farabollini F, Fontani G, Grazzi F. Physiological characteristics of pressure immobility. Effects of morphine, naloxone and pain. Behav Brain Res 1984; 12:55-63. [PMID: 6732913 DOI: 10.1016/0166-4328(84)90202-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study is an attempt to detect the most important modifications of physiological parameters occurring during pressure immobility in rabbits and to compare them with those recorded during animal hypnosis. Like the latter, pressure immobility is characterized by the development of high voltage slow waves in the EEG, reduction in frequency and amount of rhythmic slow activity in the hippocampus (RSA) and depression of spinal polysynaptic reflexes. Systolic and diastolic blood pressures are not modified. Duration of two types of immobility is positively correlated within individuals. Treatment by a single dose of morphine (1 mg/kg) potentiates the duration and this effect is antagonized by naloxone (1 mg/kg). Repeated morphine injection up to tolerance reduces duration. Pressure immobility may also be produced under persistent nociceptive stimulation and is characterized by the development of high voltage slow waves in the EEG, as is typical in the absence of pain. Naloxone, (5 mg/kg) injected in a condition of persistent noxious stimulation, reduces immobility duration. In contrast to animal hypnosis, the duration of pressure immobility is neither potentiated by pain nor reduced by naloxone (1,5 or 20 mg/kg). It is suggested that the two immobilities are controlled by several mechanisms, some similar, some different.
Collapse
|
12
|
Gmelin G, Zimmermann M. Effects of gamma-aminobutyrate and bicuculline on primary afferent depolarization of cutaneous fibres in the cat spinal cord. Neuroscience 1983; 10:869-74. [PMID: 6646432 DOI: 10.1016/0306-4522(83)90224-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The excitability of single cutaneous primary afferent fibres (sural nerve) was tested by focal stimulation in the dorsal horn of the cat spinal cord, and recording the antidromically conducted action potential in the peripheral nerve. To induce primary afferent depolarization, which is an expression of presynaptic inhibition, the superficial peroneal nerve was stimulated. The primary afferent depolarization was measured as the concomitant excitability change in the antidromically excited sural fibre. This primary afferent depolarization was reduced by 32% during microelectrophoretic release of bicuculline methochloride near the microstimulation electrode in the dorsal horn. Microelectrophoresis of gamma-aminobutyrate increased excitability in sural nerve fibres which correlated with the primary afferent depolarization induced by stimulation of the superficial peroneal nerve. The results suggest a possible role for gamma-aminobutyrate in presynaptic inhibition of cutaneous afferent fibres in the cat.
Collapse
|
13
|
Gregor M, Zimmermann M. Dorsal root potentials produced by afferent volleys in cutaneous group 3 fibers. J Physiol 1973; 232:413-25. [PMID: 4759676 PMCID: PMC1350501 DOI: 10.1113/jphysiol.1973.sp010278] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
1. Dorsal root potentials (DRP) were recorded in the lumbosacral spinal cord of decerebrated unanaesthetized cats, following afferent volleys restricted to the thin myelinated (Group III) cutaneous afferents of the hind limb. The thick myelinated fibres (Group II) were blocked by a depolarizing current.2. A pure Group III volley produced a DRP of negative polarity, called the III-DRP, signalling a depolarization of the intraspinal terminals of afferent fibres. The longer latency of the III-DRP when compared to that of the DRP after a Group II volley was accounted for quantitatively by the lower conduction velocity of the Group III fibres.3. Special attention was given to the presence of III-DRPs having a predominantly positive polarity thus signalling a presynaptic hyperpolarization. Such ;positive III-DRPs' were, however, never observed in this investigation.4. Both after transection of the spinal cord at various levels and after administration of pentobarbitone the III-DRP persisted at normal polarity. The duration of the DRPs was increased by these experimental procedures.5. The implications of these findings are discussed in relation to the prominent role postulated for the Group III fibres in the context of the gate control theory of pain.
Collapse
|
14
|
|
15
|
Young RF, King RB. Excitability changes in trigeminal primary afferent fibres elicited by dental pulp stimulation in the cat. Arch Oral Biol 1972; 17:1649-57. [PMID: 4509575 DOI: 10.1016/0003-9969(72)90227-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Jänig W, Schmidt RF, Zimmermann M. Two specific feedback pathways to the central afferent terminals of phasic and tonic mechanoreceptors. Exp Brain Res 1968; 6:116-29. [PMID: 5721758 DOI: 10.1007/bf00239166] [Citation(s) in RCA: 48] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|