Abstract
Protein synthesis, measured as leucine incorporation into acid-precipitable proteins, was determined in astrocytes in primary cultures obtained from the cerebral hemispheres of newborn mice. As can be expected for eucaryotic, ribosomal protein synthesis, the incorporation was almost completely inhibited by cycloheximide (0.01 mM), but unaffected by chloramphenicol (0.03 mM). The rate of synthesis, measured during exposure to a high (0.8 mM) concentration of leucine was 5.4 nmol/hr/mg protein in mature (i.e., at least 4-week-old) cultures. This value is at least twice as high as the protein synthesis rates reported for the adult brain in vivo, suggesting that a very considerable part of the protein synthesis in the adult brain may take place in astrocytes. The molecular weight distribution of the synthesized proteins was determined by polyacrylamide gel electrophoresis, demonstrating synthesis of at least 50 different polypeptides, ranging in molecular weight between 190,000 and 27,000 daltons. The pattern of the synthesized proteins underwent considerable alteration with age in young cultures in which the total content of protein was still increasing, but it was remarkably stable after the age of two weeks. Exposure to dibutyryl cyclic AMP, which is known to alter morphology, content of glial fibrillary acidic protein (GFA), and activities of certain enzymes in the cultures in the cultured astrocytes, caused marked alterations in the pattern of the synthesized proteins.
Collapse