1
|
Klyuchko OM. AROMATIC HYDROCARBONS OF Arthropodae SPECIES: MECHANISMS OF ACTION ON BIOLOGICAL MEMBRANES AND PERSPECTIVES OF BIOMEDICAL APPLICATION. BIOTECHNOLOGIA ACTA 2020. [DOI: 10.15407/biotech13.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
2
|
Affiliation(s)
- Olena Filchakova
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Republic of Kazakhstan
| |
Collapse
|
3
|
Monge-Fuentes V, Arenas C, Galante P, Gonçalves JC, Mortari MR, Schwartz EF. Arthropod toxins and their antinociceptive properties: From venoms to painkillers. Pharmacol Ther 2018; 188:176-185. [PMID: 29605457 DOI: 10.1016/j.pharmthera.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The complex process of pain control commonly involves the use of systemic analgesics; however, in many cases, a more potent and effective polypharmacological approach is needed to promote clinically significant improvement. Additionally, considering side effects caused by current painkillers, drug discovery is once more turning to nature as a source of more efficient therapeutic alternatives. In this context, arthropod venoms contain a vast array of bioactive substances that have evolved to selectively bind to specific pharmacological targets involved in the pain signaling pathway, playing an important role as pain activators or modulators, the latter serving as promising analgesic agents. The current review explores how the pain pathway works and surveys neuroactive compounds obtained from arthropods' toxins, which function as pain modulators through their interaction with specific ion channels and membrane receptors, emerging as promising candidates for drug design and development.
Collapse
Affiliation(s)
- Victoria Monge-Fuentes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil.
| | - Claudia Arenas
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Priscilla Galante
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Jacqueline Coimbra Gonçalves
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Elisabeth Ferroni Schwartz
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
4
|
Monge-Fuentes V, Gomes FMM, Campos GAA, Silva JDC, Biolchi AM, Dos Anjos LC, Gonçalves JC, Lopes KS, Mortari MR. Neuroactive compounds obtained from arthropod venoms as new therapeutic platforms for the treatment of neurological disorders. J Venom Anim Toxins Incl Trop Dis 2015; 21:31. [PMID: 26257776 PMCID: PMC4529710 DOI: 10.1186/s40409-015-0031-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/28/2015] [Indexed: 01/25/2023] Open
Abstract
The impact of neurological disorders in society is growing with alarming estimations for an incidence increase in the next decades. These disorders are generally chronic and can affect individuals early during productive life, imposing real limitations on the performance of their social roles. Patients can have their independence, autonomy, freedom, self-image, and self-confidence affected. In spite of their availability, drugs for the treatment of these disorders are commonly associated with side effects, which can vary in frequency and severity. Currently, no effective cure is known. Nowadays, the biopharmaceutical research community widely recognizes arthropod venoms as a rich source of bioactive compounds, providing a plethora of possibilities for the discovery of new neuroactive compounds, opening up novel and attractive opportunities in this field. Several identified molecules with a neuropharmacological profile can act in the central nervous system on different neuronal targets, rendering them useful tools for the study of neurological disorders. In this context, this review aims to describe the current main compounds extracted from arthropod venoms for the treatment of five major existing neurological disorders: stroke, Alzheimer’s disease, epilepsy, Parkinson’s disease, and pathological anxiety.
Collapse
Affiliation(s)
- Victoria Monge-Fuentes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Flávia Maria Medeiros Gomes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Gabriel Avohay Alves Campos
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Juliana de Castro Silva
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Andréia Mayer Biolchi
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Lilian Carneiro Dos Anjos
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Jacqueline Coimbra Gonçalves
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Kamila Soares Lopes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| |
Collapse
|
5
|
Fachim HA, Mortari MR, Gobbo-Netto L, Dos Santos WF. Neuroprotective activity of parawixin 10, a compound isolated from Parawixia bistriata spider venom (Araneidae: Araneae) in rats undergoing intrahippocampal NMDA microinjection. Pharmacogn Mag 2015; 11:579-85. [PMID: 26246735 PMCID: PMC4522846 DOI: 10.4103/0973-1296.160450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/10/2014] [Accepted: 07/10/2015] [Indexed: 12/22/2022] Open
Abstract
Background: Parawixia bistriata is a semi-colonial spider found mainly in southeastern of Brazil. Parawixin 10 (Pwx 10) a compound isolated from this spider venom has been demonstrated to act as neuroprotective in models of injury regulating the glutamatergic neurotransmission through glutamate transporters. Objectives: The aim of this work was to evaluate the neuroprotective effect of Pwx 10 in a rat model of excitotoxic brain injury by N-methyl-D-aspartate (NMDA) injection. Material and Methods: Male Wistar rats have been used, submitted to stereotaxic surgery for saline or NMDA microinjection into dorsal hippocampus. Two groups of animals were treated with Pwx 10. These treated groups received a daily injection of the Pwx 10 (2.5 mg/μL) in the right lateral ventricle into rats pretreated with NMDA, always at the same time, each one starting the treatment 1 h or 24 h. Nissl staining was performed for evaluating the extension and efficacy of the NMDA injury and the neuroprotective effect of Pwx 10. Results: The treatment with Pwx 10 showed neuroprotective effect, being most pronounced when the compound was administrated from 1 h after NMDA in all hippocampal subfields analyzed (CA1, CA3 and hilus). Conclusion: These results indicated that Pwx 10 may be a good template to develop therapeutic drugs for treating neurodegenerative diseases, reinforcing the importance of continuing studies on its effects in the central nervous system.
Collapse
Affiliation(s)
- Helene Aparecida Fachim
- Department of Biology, Neurobiology and Venoms Laboratory, FFCLRP, Brazil ; Institute of Neuroscience and Behavior, INeC-Ribeirão Preto, São Paulo, Brazil
| | - Marcia Renata Mortari
- Department of Physiological Sciences, Laboratory of Neuropharmacology, Institute of Biological Sciences, University of Brasilia, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Leonardo Gobbo-Netto
- Department of Physics and Chemistry, Organic Chemistry Laboratory, FCFRP, University of São Paulo, Brazil
| | - Wagner Ferreira Dos Santos
- Department of Biology, Neurobiology and Venoms Laboratory, FFCLRP, Brazil ; Institute of Neuroscience and Behavior, INeC-Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
6
|
|
7
|
Olsen CA, Kristensen AS, Strømgaard K. Niedermolekulare Verbindungen aus Spinnen als chemische Sensoren. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Olsen CA, Kristensen AS, Strømgaard K. Small molecules from spiders used as chemical probes. Angew Chem Int Ed Engl 2011; 50:11296-311. [PMID: 22034051 DOI: 10.1002/anie.201101599] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Indexed: 01/21/2023]
Abstract
Spiders are important species in ecological systems and as major predators of insects they are endowed with a plethora of low-molecular-weight natural products having intriguing biological activities. The isolation and biological characterization of these entities are well established, however, only very recently have these compounds been used as templates for the design, synthesis, and biological evaluation of synthetic analogues. In contrast, the investigation of compounds responsible for chemical communication between spiders is far less developed, but recently new light has been shed onto the area of pheromones and allomones from spiders. Herein, we recapitulate these recent results, put them into perspective with previous findings, and provide an outlook for future studies of these chemotypes.
Collapse
Affiliation(s)
- Christian A Olsen
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
9
|
Saito Y, Yanagawa Y. Synaptic mechanism for the sustained activation of oculomotor integrator circuits in the rat prepositus hypoglossi nucleus: contribution of Ca2+-permeable AMPA receptors. J Neurosci 2010; 30:15735-46. [PMID: 21106813 PMCID: PMC6633753 DOI: 10.1523/jneurosci.2814-10.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/15/2010] [Accepted: 09/21/2010] [Indexed: 11/21/2022] Open
Abstract
Sustained neural activity is involved in several brain functions. Although recurrent/feedback excitatory networks are proposed as a neural mechanism for this sustained activity, the synaptic mechanisms have not been fully clarified. To address this issue, we investigated the excitatory synaptic responses of neurons in the prepositus hypoglossi nucleus (PHN), a brainstem structure involved as an oculomotor neural integrator, using whole-cell voltage-clamp recordings in rat slice preparations. Under a blockade of inhibitory synaptic transmissions, the application of "burst stimulation" (100 Hz, 20 pulses) to a brainstem area projecting to the PHN induced an increase in the frequency of EPSCs in PHN neurons that lasted for several seconds. Sustained EPSC responses were observed even when the burst stimulation was applied in the vicinity of a recorded neuron within the PHN that was isolated from the slices. Pharmacologically, the sustained EPSC responses were reduced by 1-naphthyl acetyl spermine (50 μm), a blocker of Ca(2+)-permeable AMPA (CP-AMPA) receptors. Analysis of the current-voltage (I-V) relationship of the current responses to iontophoretic application of kainate revealed that more than one-half of PHN neurons exhibited an inwardly rectifying I-V relationship. Furthermore, PHN neurons exhibiting inwardly rectifying current responses showed higher Ca(2+) permeability. The sustained EPSC responses were also reduced by flufenamic acid (200 μm), a blocker of Ca(2+)-activated nonselective cation (CAN) channels. These results indicate that the sustained EPSC responses are attributable to the sustained activation of local excitatory networks in the PHN, which arises from the activation of CP-AMPA receptors and CAN channels in PHN neurons.
Collapse
Affiliation(s)
- Yasuhiko Saito
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan.
| | | |
Collapse
|
10
|
Vassilevski AA, Kozlov SA, Grishin EV. Molecular diversity of spider venom. BIOCHEMISTRY (MOSCOW) 2010; 74:1505-34. [PMID: 20210706 DOI: 10.1134/s0006297909130069] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spider venom, a factor that has played a decisive role in the evolution of one of the most successful groups of living organisms, is reviewed. Unique molecular diversity of venom components including substances of variable structure (from simple low molecular weight compounds to large multidomain proteins) with different functions is considered. Special attention is given to the structure, properties, and biosynthesis of toxins of polypeptide nature.
Collapse
Affiliation(s)
- A A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
11
|
|
12
|
Syntheses and biological activities of fluorescent-labeled analogs of acylpolyamine toxin NPTX-594 isolated from the venom of Madagascar Joro spider. Bioorg Med Chem 2009; 17:57-63. [DOI: 10.1016/j.bmc.2008.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 11/07/2008] [Accepted: 11/08/2008] [Indexed: 11/18/2022]
|
13
|
|
14
|
|
15
|
Magazanik LG. Spider Neurotoxins as Tools for the Investigation of Glutamate Receptors. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/15569549609080107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
|
17
|
|
18
|
BINFORD GRETAJ. Differences in venom composition between orb-weaving and wandering Hawaiian Tetragnatha (Araneae). Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.2001.tb01415.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
De Lima ME, Figueiredo SG, Pimenta AMC, Santos DM, Borges MH, Cordeiro MN, Richardson M, Oliveira LC, Stankiewicz M, Pelhate M. Peptides of arachnid venoms with insecticidal activity targeting sodium channels. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:264-279. [PMID: 17218159 DOI: 10.1016/j.cbpc.2006.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 10/19/2006] [Accepted: 10/21/2006] [Indexed: 12/18/2022]
Abstract
Arachnids have a venom apparatus and secrete a complex chemical mixture of low molecular mass organic molecules, enzymes and polypeptide neurotoxins designed to paralyze or kill their prey. Most of these toxins are specific for membrane voltage-gated sodium channels, although some may also target calcium or potassium channels and other membrane receptors. Scorpions and spiders have provided the greatest number of the neurotoxins studied so far, for which, a good number of primary and 3D structures have been obtained. Structural features, comprising a folding that determines a similar spatial distribution of charged and hydrophobic side chains of specific amino acids, are strikingly common among the toxins from spider and scorpion venoms. Such similarities are, in turn, the key feature to target and bind these proteins to ionic channels. The search for new insecticidal compounds, as well as the study of their modes of action, constitutes a current approach to rationally design novel insecticides. This goal tends to be more relevant if the resistance to the conventional chemical products is considered. A promising alternative seems to be the biotechnological approach using toxin-expressing recombinant baculovirus. Spider and scorpion toxins having insecticidal activity are reviewed here considering their structures, toxicities and action mechanisms in sodium channels of excitable membranes.
Collapse
Affiliation(s)
- M E De Lima
- Lab. Venenos e Toxinas Animais, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil; Núcleo de Biomoléculas - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil.
| | - S G Figueiredo
- Centro de Ciências Fisiológicas, CBM - Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - A M C Pimenta
- Lab. Venenos e Toxinas Animais, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil; Núcleo de Biomoléculas - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil
| | - D M Santos
- Lab. Venenos e Toxinas Animais, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil; Núcleo de Biomoléculas - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil
| | - M H Borges
- Lab. Venenos e Toxinas Animais, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil; Centro de Pesquisa Prof. Carlos R. Diniz, Fundação Ezequiel Dias, Belo Horizonte, MG, Brasil
| | - M N Cordeiro
- Centro de Pesquisa Prof. Carlos R. Diniz, Fundação Ezequiel Dias, Belo Horizonte, MG, Brasil
| | - M Richardson
- Centro de Pesquisa Prof. Carlos R. Diniz, Fundação Ezequiel Dias, Belo Horizonte, MG, Brasil
| | - L C Oliveira
- Departamento de Farmácia Bioquímica - Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000, Diamantina, MG, Brasil
| | - M Stankiewicz
- Laboratory of Biophysics - Institute of General and Molecular Biology, N. Copernicus University, 87-100, Torun, Poland
| | - M Pelhate
- Lab. Récepteurs et Canaux Ioniques Membranaires, Université d'Angers, 49045, Angers, France
| |
Collapse
|
20
|
Mortari MR, Cunha AOS, Ferreira LB, dos Santos WF. Neurotoxins from invertebrates as anticonvulsants: From basic research to therapeutic application. Pharmacol Ther 2007; 114:171-83. [PMID: 17399793 DOI: 10.1016/j.pharmthera.2007.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 01/19/2007] [Accepted: 01/19/2007] [Indexed: 12/21/2022]
Abstract
Invertebrate venoms have attracted considerable interest as a potential source of bioactive substances, especially neurotoxins. These molecules have proved to be extremely useful tools for the understanding of synaptic transmission events, and they have contributed to the design of novel drugs for the treatment of neurological disorders and pain. In this context, as epilepsy involves neuronal substrates, which are sites of action of many neurotoxins; venoms may be particularly useful for antiepileptic drug (AED) research. Epilepsy is a chronic disease whose treatment consists of controlling seizures with antiepileptics that very often induce strong undesirable side effects that may limit treatment. Here, we review the vast, but yet unexplored, world of neurotoxins from invertebrates used as probes in pharmacological screening for novel and less toxic antiepileptics. We briefly review (1) the molecular basis of epilepsy, as well as the sites of action of commonly used anticonvulsants (we bring a comprehensive review of the elements from invertebrate venoms which are mostly studied in neuroscience research and may be useful for drug development); (2) peptides from conus snails; (3) peptides and polyamine toxins from spiders and wasps; and (4) peptides from scorpions.
Collapse
Affiliation(s)
- Márcia Renata Mortari
- Neurobiology and Venoms Laboratory, Department of Biology, School of Philosophy, Sciences and Literature, University of São Paulo Ribeirão Preto, Brazil
| | | | | | | |
Collapse
|
21
|
Estrada G, Villegas E, Corzo G. Spider venoms: a rich source of acylpolyamines and peptides as new leads for CNS drugs. Nat Prod Rep 2007; 24:145-61. [PMID: 17268611 DOI: 10.1039/b603083c] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Advances in NMR and mass spectrometry as well as in peptide biochemistry coupled to modern methods in electrophysiology have permitted the isolation and identification of numerous products from spider venoms, previously explored due to technical limitations. The chemical composition of spider venoms is diverse, ranging from low molecular weight organic compounds such as acylpolyamines to complex peptides. First, acylpolyamines (< 1000 Da) have an aromatic moiety linked to a hydrophilic lateral chain. They were characterized for the first time in spider venoms and are ligand-gated ion channel antagonists, which block mainly postsynaptic glutamate receptors in invertebrate and vertebrate nervous systems. Acylpolyamines represent the vast majority of organic components from the spider venom. Acylpolyamine analogues have proven to suppress hippocampal epileptic discharges. Moreover, acylpolyamines could suppress excitatory postsynaptic currents inducing Ca+ accumulation in neurons leading to protection against a brain ischemic insult. Second, short spider peptides (< 6000 Da) modulate ionic currents in Ca2+, Na+, or K+ voltage-gated ion channels. Such peptides may contain from three to four disulfide bridges. Some spider peptides act specifically to discriminate among Ca2+, Na+, or K+ ion channel subtypes. Their selective affinities for ion channel subfamilies are functional for mapping excitable cells. Furthermore, several of these peptides have proven to hyperpolarize peripheral neurons, which are associated with supplying sensation to the skin and skeletal muscles. Some spider N-type calcium ion channel blockers may be important for the treatment of chronic pain. A special group of spider peptides are the amphipathic and positively charged peptides. Their secondary structure is alpha-helical and they insert into the lipid cell membrane of eukaryotic or prokaryotic cells leading to the formation of pores and subsequently depolarizing the cell membrane. Acylpolyamines and peptides from spider venoms represent an interesting source of molecules for the design of novel pharmaceutical drugs.
Collapse
Affiliation(s)
- Georgina Estrada
- Instituto de Biotecnología, UNAM, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México
| | | | | |
Collapse
|
22
|
Nakajima T. Nanoanalysis of the arthropod neuro-toxins. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2006; 82:297-310. [PMID: 25792792 PMCID: PMC4338820 DOI: 10.2183/pjab.82.297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 09/20/2006] [Indexed: 06/04/2023]
Abstract
Many kinds of venomous principles modulate physiological responses of mammalian signal transduction systems, on which they act selectively as enhancers, inhibitors or some other kind of effectors. These toxins become useful tools for physiological research. We have employed and characterized paralyzing toxins from the venom of spiders, insects and scorpions with a limited supply. We have developed rapid and sensitive mass spectrometric technology and applied for the identification of these toxins. Venom profiles are screened by MALDI-TOF fingerprinting analysis prior to purification of venomous components, then marked target toxins of small molecular mass (1000-5000) are characterized directly by means of mass spectrometric techniques such as Frit-FAB MS/MS, CID/PSD-TOF MS, Capil.-HPLC/Q-TOF MS/MS etc.
Collapse
Affiliation(s)
- Terumi Nakajima
- Hoshi University, 2–4–41 Ebara, Shinagawa-ku, Tokyo 142–8501, Japan (e-mail: )
| |
Collapse
|
23
|
Salamoni SD, da Costa JC, Palma MS, Konno K, Nihei KI, Azambuja NA, Neto EP, Venturin GT, Tavares AA, de Abreu DS, Breda RV. The antiepileptic activity of JSTX-3 is mediated by N-methyl-D-aspartate receptors in human hippocampal neurons. Neuroreport 2005; 16:1869-73. [PMID: 16237345 DOI: 10.1097/01.wnr.0000185012.98821.2b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We analyzed the effect of the acylpolyaminetoxin JSTX-3 on the epileptogenic discharges induced by perfusion of human hippocampal slices with artificial cerebrospinal fluid lacking Mg2+ or N-methyl-D-aspartate. Hippocampi were surgically removed from patients with refractory medial temporal lobe epilepsy, sliced in the surgical room and taken to the laboratory immersed in normal artificial cerebrospinal fluid. Epileptiform activity was induced by perfusion with Mg2+-free artificial cerebrospinal fluid or by iontophoretically applied N-methyl-D-aspartate and intracellular and field recordings of CA1 neurons were performed. The ictal-like discharges induced by Mg2+-free artificial cerebrospinal fluid and N-methyl-D-aspartate were blocked by incubation with JSTX-3. This effect was similar to that obtained with the N-methyl-D-aspartate receptor antagonist DL (-)2-amino-5 phosphonovaleric acid. Our findings suggest that in human hippocampal neurons, the antiepileptic effect of JSTX-3 is mediated by its action on N-methyl-D-aspartate receptor.
Collapse
Affiliation(s)
- Simone Denise Salamoni
- Neuroscience Laboratory, Biomedical Research Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Salamoni SD, Costa da Costa J, Palma MS, Konno K, Nihei KI, Tavares AA, de Abreu DS, Venturin GT, de Borba Cunha F, de Oliveira RM, Breda RV. Antiepileptic effect of acylpolyaminetoxin JSTX-3 on rat hippocampal CA1 neurons in vitro. Brain Res 2005; 1048:170-6. [PMID: 15913572 DOI: 10.1016/j.brainres.2005.04.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 04/19/2005] [Accepted: 04/22/2005] [Indexed: 11/29/2022]
Abstract
The Joro spider toxin (JSTX-3), derived from Nephila clavata, has been found to block glutamate excitatory activity. Epilepsy has been studied in vitro, mostly on rat hippocampus, through brain slices techniques. The aim of this study is to verify the effect of the JSTX-3 on the epileptiform activity induced by magnesium-free medium in rat CA1 hippocampal neurons. Experiments were performed on hippocampus slices of control and pilocarpine-treated Wistar rats, prepared and maintained in vitro. Epileptiform activity was induced through omission of magnesium from the artificial cerebrospinal fluid (0-Mg2+ ACSF) superfusate and iontophoretic application of N-methyl-D-aspartate (NMDA). Intracellular recordings were obtained from CA1 pyramidal neurons both of control and epileptic rats. Passive membrane properties were analyzed before and after perfusion with the 0-Mg2+ ACSF and the application of toxin JSTX-3. During the ictal-like activity, the toxin JSTX-3 was applied by pressure ejection, abolishing this activity. This effect was completely reversed during the washout period when the slices were formerly perfused with artificial cerebrospinal fluid (ACSF) and again with 0-Mg2+ ACSF. Our results suggest that the toxin JSTX-3 is a potent blocker of induced epileptiform activity.
Collapse
Affiliation(s)
- Simone Denise Salamoni
- Laboratório de Neurociências, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ando H, Kuwasawa K. Neuronal and neurohormonal control of the heart in the stomatopod crustacean,Squilla oratoria. J Exp Biol 2004; 207:4663-77. [PMID: 15579561 DOI: 10.1242/jeb.01272] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe heart of Squilla oratoria contains a cardiac ganglion that consists of 15 intrinsic neurons, supplied by a pair of inhibitory nerves and two pairs of excitatory nerves, arising from the central nervous system. These comprise the extrinsic cardiac innervation. The paired cardio-inhibitor (CI)nerves run out in the 10th pair of nerve roots emerging from the subesophageal ganglion (SEG). The cell bodies of the CI neurons are found in the hemisphere of the 1st segment of the SEG contralateral to the nerve roots in which the CI axons emerge. The two pairs of 1st and 2nd cardio-accelerator (CA1 and CA2)nerves run out in the 16th and 19th pairs of nerve roots of the SEG. The cell bodies of the CA1 and CA2 neurons are found in the hemispheres of the 3rd and 4th segments of the SEG ipsilateral to the nerve roots in which the CA1 and CA2 axons are found.The heartbeat was activated by application of glutamate, serotonin,dopamine, octopamine or acetylcholine, which were applied to the heart by perfusion into an organ bath. Joro-spider toxin (JSTX) blocked myocardial excitatory junctional potentials evoked by the cardiac ganglion. Neuronal cell bodies and processes in the heart were examined using immunocytochemical techniques. All 15 neurons of the cardiac ganglion showed glutamate-like immunoreactivity. Glutamate may be a neurotransmitter of the cardiac ganglion neurons.JSTX also blocked cardiac acceleration by activation of CA1 and CA2 axons. CA1 and CA2 axons showed glutamate-like immunoreactivity. It is likely that glutamate is a neurotransmitter for the cardio-acceleratory neurons.The heartbeat was inhibited by application of γ-amino-butyric acid(GABA). Cardiac inhibition induced by activation of CI axons was blocked by picrotoxin. CI axons showed GABA-like immunoreactivity. These results may support the identification of GABA as an extrinsic inhibitory neurotransmitter.
Collapse
Affiliation(s)
- Hiroshi Ando
- Department of Oral Physiology, Matsumoto Dental University School of Dentistry, Shiojiri 399-0781, Japan
| | | |
Collapse
|
26
|
Abstract
Neurodegeneration induced by excitatory neurotransmitter glutamate is considered to be of particular relevance in several types of acute and chronic neurological impairments ranging from cerebral ischaemia to neuropathological conditions such as motor neuron disease, Alzheimer's, Parkinson's disease and epilepsy. The hyperexcitation of glutamate receptors coupled with calcium overload can be prevented or modulated by using well-established competitive and non-competitive antagonists targeting ion/receptor channels. The exponentially increasing body of pharmacological evidence over the years indicates potential applications of peptide toxins, due to their exquisite subtype selectivity on ion channels and receptors, as lead structures for the development of drugs for the treatment of wide variety of neurological disorders. This review comprehensively highlights the overview of the diversity in the molecular as well as neurobiological mechanisms of different peptide toxins derived from venomous animals with particular reference to neuroprotection. In addition, the potential applications of peptide toxins in the diagnosis and treatment of neurological disorders such as neuromuscular disorders, epilepsy, Alzheimer's and Parkinson's diseases, gliomas and ischaemic stroke and their future prospects in the diagnosis as well as in the therapy are addressed.
Collapse
Affiliation(s)
- Wudayagiri Rajendra
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | | | |
Collapse
|
27
|
Rodrigues MCA, Guizzo R, Gobbo-Neto L, Ward RJ, Lopes NP, dos Santos WF. The biological activity in mammals and insects of the nucleosidic fraction from the spider Parawixia bistriata. Toxicon 2004; 43:375-83. [PMID: 15051400 DOI: 10.1016/j.toxicon.2004.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 01/13/2004] [Indexed: 11/18/2022]
Abstract
Previous work has shown that the crude venom of Parawixia bistriata induces convulsive seizures in rats after intracerebroventricular injection. In this work, the isolation of a bioactive fraction with ultraviolet absorption characteristics of nucleic acid and trace protein or amino acid content is described. NMR analysis demonstrated that the major component of the active fraction is the nucleoside inosine. An analogue of this component (inosine 5'-monophosphate) induced a delayed paralysis effect in termites.
Collapse
Affiliation(s)
- Marcelo Cairrão Araujo Rodrigues
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14049-901 São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
de O Beleboni R, Pizzo AB, Fontana ACK, de O G Carolino R, Coutinho-Netto J, Dos Santos WF. Spider and wasp neurotoxins: pharmacological and biochemical aspects. Eur J Pharmacol 2004; 493:1-17. [PMID: 15189759 DOI: 10.1016/j.ejphar.2004.03.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 03/25/2004] [Indexed: 10/26/2022]
Abstract
Venoms from several arthropods are recognized as useful sources of bioactive substances, such as peptides, acylpolyamines, and alkaloids, which show a wide range of pharmacological effects on synaptic transmission. In this work, we summarize and compile several biochemical and pharmacological aspects related to spider and wasp neurotoxins. Their inhibitory and stimulatory actions on ion channels, receptors, and transporters involved in mammalian and insect neurotransmission are considered.
Collapse
Affiliation(s)
- Renê de O Beleboni
- Department of Biochemistry and Immunology, School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
This review summarises current knowledge of polyamine-containing spider toxins and their interactions with ionotropic receptors of invertebrate and vertebrate excitable cells. Their diverse actions on ionotropic glutamate and acetylcholine receptors, which include potentiation, closed channel block and open channel block, are discussed in the context of toxin and target structures. Factors that complicate attempts to identify and pharmacologically characterise the binding sites for these toxins include their ability to permeate channels of some ionotropic receptors and their apparent accumulation in a cellular compartment, possibly the membrane bilayer.
Collapse
Affiliation(s)
- Ian R Mellor
- School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | |
Collapse
|
30
|
Wakamiya T, Kinoshita T, Hattori Y, Yamaguchi Y, Naoki H, Corzo G, Nakajima T. Study on the Structure Activity Relationships of NPTX-594, a Spider Toxin Belonging to the Type-B Acylpolyamine Structure. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2004. [DOI: 10.1246/bcsj.77.331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Oliveira LC, De Lima ME, Pimenta AMC, Mansuelle P, Rochat H, Cordeiro MN, Richardson M, Figueiredo SG. PnTx4-3, a new insect toxin from Phoneutria nigriventer venom elicits the glutamate uptake inhibition exhibited by PhTx4 toxic fraction. Toxicon 2003; 42:793-800. [PMID: 14757211 DOI: 10.1016/j.toxicon.2003.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several pools of neurotoxic peptides obtained from fractionated Phoneutria nigriventer venom induce different toxicological effects. One of them, PhTx4, is highly toxic towards insects and displays only a slight toxicity when injected in mice. Also, this fraction contains a class of peptides that are able to inhibit glutamate uptake in preparations of mammalian central nervous systems (CNS). In this work a new toxin called PnTx4-3 was isolated from the PhTx4 fraction by reverse phase and anion exchange steps using high performance liquid chromatography (HPLC). Edman sequencing of PnTx4-3 revealed that it was a polypeptide of 48 amino acid residues, containing 10 cysteines cross-linked by five disulfide bridges. The molecular mass measured by ES-Q-TOF mass spectrometry was 5199.49+/-0.64 Da, which is very close to the calculated mass from amino acid sequence (5199.99 Da). This toxin induces immediate excitatory effects when injected intrathoracically in house flies and cockroaches. Intracerebroventricular injections of 30 microg of PnTx4-3 in mice resulted in no apparent signs of intoxication. In order to make an orthologous comparison, pharmacological characterisation were carried out in rat brain synaptosomes by using [3H]-L-glutamate, showed that the whole PhTx4 fraction as well as the pure toxins PnTx4-3, Tx4(6-1) and Tx4(5-5) obtained of this fraction, were able to inhibit the glutamate uptake in the micromolar concentration range. PnTx4-3 inhibits the glutamate uptake in a dose dependent manner, with an IC50 of approximately 1 microM. PnTx4-3 is highly homologous to the Tx4(6-1) and Tx4(5-5) toxins previously described from the same fraction.
Collapse
Affiliation(s)
- Leida Calegário Oliveira
- Departamento de Fisiologia e Farmacologia, Instituto de Ciencias Biologicas, UFMG Av. Antônio Carlos, 6627-Pampulha Caixa Postal 486-31270-901, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
32
|
F -Tsukamoto Y, Kuwasawa K. Neurohormonal and glutamatergic neuronal control of the cardioarterial valves in the isopod crustacean Bathynomus doederleini. J Exp Biol 2003; 206:431-43. [PMID: 12502764 DOI: 10.1242/jeb.00077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The heart of Bathynomus doederleini gives rise to an anterior median artery (AMA), one pair of anterior lateral arteries (ALAs) and five pairs of lateral arteries (LAs). Cardioarterial valves are located at the junctions between the heart and arteries, each composed of a pair of muscular flaps. All valves of the AMA and the ALAs receive valve excitatory (constrictor) nerves (VEs). The valves of the ALAs receive dual innervation from both constrictor and inhibitor (dilator) nerves, while the valves of the AMA receive innervation from a constrictor nerve alone. The effects of candidate neurohormones on cardioarterial valves were examined by measuring the pressure in each artery at which haemolymph flows out of the heart through the valve. Serotonin, octopamine, norepinephrine, glutamate (Glu) and proctolin constricted the cardioarterial valves and thus decreased the arterial pressure in all the arteries. Dopamine also decreased the arterial pressure of arteries except for the ALAs, in which pressure was increased. Among the neurohormones exerting excitatory effects on the valves, only Glu depolarized the membrane potential of valve muscle cells. The glutamatergic agonists kainate and quisqualate also depolarized the valve muscle cells of the AMA. Excitatory junctional potentials produced in the valves of the AMA in response to the stimulation of a VE were blocked by the glutamatergic antagonists Joro spider toxin and MK-801. Glu is the likeliest candidate for a neurotransmitter for the VEs.
Collapse
Affiliation(s)
- Yoko F -Tsukamoto
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji 192-0397, Japan
| | | |
Collapse
|
33
|
Abstract
Spider venoms represent an incredible source of biologically active substances which selectively target a variety of vital physiological functions in both insects and mammals. Many toxins isolated from spider venoms have been invaluable in helping to determine the role and diversity of neuronal ion channels and the process of exocytosis. In addition, there is enormous potential for the use of insect specific toxins from animal sources in agriculture. For these reasons, the past 15-20 years has seen a dramatic increase in studies on the venoms of many animals, particularly scorpions and spiders. This review covers the pharmacological and biochemical activities of spider venoms and the nature of the active components. In particular, it focuses on the wide variety of ion channel toxins, novel non-neurotoxic peptide toxins, enzymes and low molecular weight compounds that have been isolated. It also discusses the intraspecific sex differences in given species of spiders.
Collapse
Affiliation(s)
- Lachlan D Rash
- Monash Venom Group, Department of Pharmacology, PO Box 13E, Monash University, Victoria 3800, Australia
| | | |
Collapse
|
34
|
de Lima ME, Stankiewicz M, Hamon A, de Figueiredo SG, Cordeiro MN, Diniz CR, Martin-Eauclaire MF, Pelhate M. The toxin Tx4(6-1) from the spider Phoneutria nigriventer slows down Na(+) current inactivation in insect CNS via binding to receptor site 3. JOURNAL OF INSECT PHYSIOLOGY 2002; 48:53-61. [PMID: 12770132 DOI: 10.1016/s0022-1910(01)00143-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tx4(6-1) a neurotoxic peptide from the venom of the aggressive South American 'armed' spider Phoneutria nigriventer, has been previously isolated and sequenced. It shows no detectable activity in mice but affects the peripheral nervous system of insects by stimulating glutamate release at the neuromuscular junction. Here we investigate possible interactions of the toxin with voltage-activated sodium channels (Na(v)). We confirm that it is ineffective on mammalian Na(v) channels, and establish that it competes with the alpha-like toxin 125I-Bom IV, for binding on the site 3 of insect Na(v) channel (IC(50) value around 25nM). The physiological consequences of this binding to the insect Na(v) channel are shown by electrophysiology: Tx4(6-1) prolongs evoked axonal action potentials (APs) (<500&mgr;s duration in control). Prolonged 8-10ms or 'plateau' 500-800ms APs accompanied by repetitive firing at 80-150Hz are recorded after 4-8min of toxin action. This modification of evoked activity is due to a slowing down of sodium current inactivation. Effects of Tx4(6-1) on sodium current are compared with those of a typical scorpion alpha-toxin and of some other spider toxins active on insect Na(v) channels. At the end of long voltage pulses, the maintained inward sodium current may represent 50% of the peak current after scorpion alpha-toxin but only about 8-10% after spider toxins. To understand the slight differences in the effects of alpha-scorpion and spider toxins on the insect Na(v) channel, structural studies of toxin-channels interactions would be necessary.
Collapse
Affiliation(s)
- M E. de Lima
- Departamento de Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901, MG, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wakamiya T, Yamamoto A, Kawaguchi K, Kinoshita T, Yamaguchi Y, Itagaki Y, Naoki H, Nakajima T. Total Synthesis of the Novel Spider Toxin NPTX-594 fromNephila madagascariencis. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2001. [DOI: 10.1246/bcsj.74.1743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Hossain MA, Murayama N, Oka T, Nakajima T. Evidence of [Ca(2+)]i elevation by anti-calreticulin immunoreactive protein in neurons. Neurosci Res 2000; 36:285-90. [PMID: 10771106 DOI: 10.1016/s0168-0102(99)00130-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Calreticulin is a multifunctional Ca(2+)-binding protein. The effect of anti-calreticulin antibody on intracellular free calcium concentration [Ca(2+)]i was studied in cultured neurons using fura-2 based microfluorometry. Anti-calreticulin increased [Ca(2+)]i in a dose dependent manner. The anti-calreticulin antibody produced a rapid transient [Ca(2+)]i peak followed by a long slowly decaying plateau. Anti-calreticulin induced extracellular Ca(2+) influx in cultured neuron cells was blocked partially by N-methyl-D-aspartate receptor (NMDAR) antagonist 2-amino-5-phosphonovaleric acid (AP5) and spider polyamine toxin JSTX-3, which is recognized as a blocker of glutamatergic nervous system. Furthermore, anti-calreticulin induced intracellular Ca(2+) desensitized NMDAR. Dual immunofluorescent staining studies revealed that NMDAR co-localized with calreticulin in the cultured neurons. Thus, the signal transduction system of NMDA might be closely concerned with the extracellular calreticulin like protein.
Collapse
Affiliation(s)
- M A Hossain
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamotocho, Mishimagun, Osaka, Japan.
| | | | | | | |
Collapse
|
37
|
Itagaki Y, Nakajima T. ACYLPOLYAMINES: MASS SPECTROMETRIC ANALYTICAL METHODS FORAraneidaeSPIDER ACYLPOLYAMINES. ACTA ACUST UNITED AC 2000. [DOI: 10.1081/txr-100100314] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Mafra RA, Figueiredo SG, Diniz CR, Cordeiro MN, Cruz JD, De Lima ME. PhTx4, a new class of toxins from Phoneutria nigriventer spider venom, inhibits the glutamate uptake in rat brain synaptosomes. Brain Res 1999; 831:297-300. [PMID: 10412010 DOI: 10.1016/s0006-8993(99)01472-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report the characterization of a new class of glutamate uptake inhibitors isolated from Phoneutria nigriventer venom. Glutamate transport activity was assayed in rat cerebrocortical synaptosomes by using [(3)H]-L-glutamate. PhTx4 inhibited glutamate uptake in a dose dependent manner. The IC(50) value obtained was 2.35+/-0.9 microg/ml which is in the observed range reported for glutamate uptake blockers. Tx4-7, one of PhTx4 toxins, showed the strongest inhibitory activity (50.3+/-0.69%, n=3).
Collapse
Affiliation(s)
- R A Mafra
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte-MG, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Hua SY, Raciborska DA, Trimble WS, Charlton MP. Different VAMP/synaptobrevin complexes for spontaneous and evoked transmitter release at the crayfish neuromuscular junction. J Neurophysiol 1998; 80:3233-46. [PMID: 9862918 DOI: 10.1152/jn.1998.80.6.3233] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Different VAMP/synaptobrevin complexes for spontaneous and evoked transmitter release at the crayfish neuromuscular junction. J. Neurophysiol. 80: 3233-3246, 1998. Although vesicle-associated membrane protein (VAMP/synaptobrevin) is essential for evoked neurotransmitter release, its role in spontaneous transmitter release remains uncertain. For instance, many studies show that tetanus toxin (TeNT), which cleaves VAMP, blocks evoked transmitter release but leaves some spontaneous transmitter release. We used recombinant tetanus and botulinum neurotoxin catalytic light chains (TeNT-LC, BoNT/B-LC, and BoNT/D-LC) to examine the role of VAMP in spontaneous transmitter release at neuromuscular junctions (nmj) of crayfish. Injection of TeNT-LC into presynaptic axons removed most of the VAMP immunoreactivity and blocked evoked transmitter release without affecting nerve action potentials or Ca2+ influx. The frequency of spontaneous transmitter release was little affected by the TeNT-LC when the evoked transmitter release had been blocked by >95%. The spontaneous transmitter release left after TeNT-LC treatment was insensitive to increases in intracellular Ca2+. BoNT/B-LC, which cleaves VAMP at the same site as TeNT-LC but uses a different binding site, also blocked evoked release but had minimal effect on spontaneous release. However, BoNT/D-LC, which cleaves VAMP at a different site from the other two toxins but binds to the same position on VAMP as TeNT, blocked both evoked and spontaneous transmitter release at similar rates. The data indicate that different VAMP complexes are employed for evoked and spontaneous transmitter release; the VAMP used in spontaneous release is not readily cleaved by TeNT or BoNT/B. Because the exocytosis that occurs after the action of TeNT cannot be increased by increased intracellular Ca2+, the final steps in neurotransmitter release are Ca2+ independent.
Collapse
Affiliation(s)
- S Y Hua
- Physiology Department, University of Toronto, Toronto, Ontario, M5S 1A8 Canada
| | | | | | | |
Collapse
|
40
|
Abstract
Glutamate receptors (GluRs) mediate most of the excitatory neurotransmission in the mammalian central nervous system (CNS). In addition, they are involved in plastic changes in synaptic transmission as well as excitotoxic neuronal cell death that occurs in a variety of acute and chronic neurological disorders. The GluRs are divided into two distinct groups, ionotropic and metabotropic receptors. The ionotropic receptors (iGluRs) are further subdivided into three groups: alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), kainate and N-methyl-D-aspartate (NMDA) receptor channels. The metabotropic receptors (mGluRs) are coupled to GTP-binding proteins (G-proteins), and regulate the production of intracellular messengers. The application of molecular cloning technology has greatly advanced our understanding of the GluR system. To date, at least 14 cDNAs of subunit proteins constituting iGluRs and 8 cDNAs of proteins constituting mGluRs have been cloned in the mammalian CNS, and the molecular structure, distribution and developmental change in the CNS, functional and pharmacological properties of each receptor subunit have been elucidated. Furthermore, the obtained clones have provided valuable tools for conducting studies to clarify the physiological and pathophysiological significances of each subunit. For example, the generation of gene knockout mice has disclosed critical roles of some GluR subunits in brain functions. In this article, we review recent progress in the research for GluRs with special emphasis on the molecular diversity of the GluR system and its implications for physiology and pathology of the CNS.
Collapse
Affiliation(s)
- S Ozawa
- Department of Physiology, Gunma University School of Medicine, Maebashi, Japan.
| | | | | |
Collapse
|
41
|
Palma MS, Itagaki Y, Fujita T, Naoki H, Nakajima T. Structural characterization of a new acylpolyaminetoxin from the venom of Brazilian garden spider Nephilengys cruentata. Toxicon 1998; 36:485-93. [PMID: 9637368 DOI: 10.1016/s0041-0101(97)00139-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of mass spectrometry, in which high-energy CID and charge remote fragmentation both of protonated and sodium-attached molecular ions was applied, afforded the structural elucidation of a new acylpolyaminetoxin with Mw=801 Da from the venom of the Brazilian garden spider Nephilengys cruentata. In spite of having the same Mw of the NPTX-2, previously described in the venom of the Joro spider Nephila clavata, neither toxins are isomers. In order to differentiate them by using the most usual nomenclature, the new toxin was named NPTX-801C and the NPTX-2 was renamed to NPTX-801E. Both toxins have as common structure the 4-hydroxyindole-3-acetyl-asparaginyl-cadaveryl moiety in their molecules and their structure may be represented in a simplified way: NPTX-801E is HO-indole-Asn-Cad-Pta-Orn-Arg and NPTX-801C is HO-indole-Asn-Cad-Gly-Put-Pta-Pta.
Collapse
Affiliation(s)
- M S Palma
- Laboratory of Molecular Biology, Department of Biology, Institute of Biosciences, CEVAP-UNESP, Bela Vista, Rio Claro, SP, Brazil
| | | | | | | | | |
Collapse
|
42
|
Koike M, Iino M, Ozawa S. Blocking effect of 1-naphthyl acetyl spermine on Ca(2+)-permeable AMPA receptors in cultured rat hippocampal neurons. Neurosci Res 1997; 29:27-36. [PMID: 9293490 DOI: 10.1016/s0168-0102(97)00067-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Effects of 1-naphthyl acetyl spermine (NASPM), a synthetic analogue of Joro spider toxin (JSTX), on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors were studied in cultured rat hippocampal neurons using the whole-cell patch clamp technique. A population of cultured neurons had AMPA receptors with a strong inward rectification and a high permeability to Ca2+ (type II neurons). Whereas most neurons (type I neurons) had AMPA receptors with a slight outward rectification and little Ca2+ permeability. NASPM selectively suppressed the inwardly rectifying and Ca(2+)-permeable AMPA receptors expressed in type II neurons. It had no effect on AMPA receptors in type I neurons. The blocking effect of NASPM on the Ca(2+)-permeable AMPA receptors was use and voltage-dependent. When the effect of NASPM reached a steady state, current responses induced by ionophoretic applications of kainate, a non-desensitizing agonist of AMPA receptors, in type II neurons were suppressed by NASPM in a dose-dependent manner at -60 mV (IC50 0.33 microM, and Hill coefficient 0.94). The response to kainate recovered partially after washing out NASPM. NASPM did not affect the Ca(2+)-permeable AMPA receptors when the neuronal membrane was held at potentials more positive than +40 mV. Furthermore, the blockade by NASPM which was attained at negative potentials was transiently removed by shifting membrane potential to +60 mV for 5 s together with a single ionophoretic application of kainate. NASPM would be useful as a pharmacological tool for elucidating both physiological and pathological significances of Ca(2+)-permeable AMPA receptors in the CNS.
Collapse
Affiliation(s)
- M Koike
- Department of Physiology, Gunma University School of Medicine, Japan.
| | | | | |
Collapse
|
43
|
Atakuziev BU, Yukel'son LY. Structural-functional characteristics of toxins from spiders of the araneidae family. Chem Nat Compd 1996. [DOI: 10.1007/bf01374025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Takazawa A, Yamazaki O, Kanai H, Ishida N, Kato N, Yamauchi T. Potent and long-lasting anticonvulsant effects of 1-naphthylacetyl spermine, an analogue of Joro spider toxin, against amygdaloid kindled seizures in rats. Brain Res 1996; 706:173-6. [PMID: 8720508 DOI: 10.1016/0006-8993(95)01334-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The anticonvulsant effect of 1-naphthylacetyl spermine (1-NA-Spm), an analogue of Joro spider toxin, against amygdaloid kindled seizures was studied in rats. 1-NA-Spm (10, 20 and 40 micrograms/rat) dose-dependently improved kindled seizures and shortened the afterdischarge duration 30 min after the administration. The anticonvulsant effect was observed even one day after the drug, and then gradually disappeared within 4 days. The present findings demonstrate that 1-NA-Spm acts as a potent and long-acting anticonvulsant against amygdaloid kindled seizures, and also suggest, together with the previous findings, that the calcium-permeable AMPA receptors, which are selectively antagonized by 1-NA-Spm, play a critical role in the seizure generation mechanism of amygdaloid kindling.
Collapse
Affiliation(s)
- A Takazawa
- Department of Neuropsychiatry, Saitama Medical School, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Thorogood MS, Brodfuehrer PD. The role of glutamate in swim initiation in the medicinal leech. INVERTEBRATE NEUROSCIENCE : IN 1995; 1:223-33. [PMID: 9372146 DOI: 10.1007/bf02211024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Antagonists were used to investigate the role of the excitatory amino acid, L-glutamate, in the swim motor program of Hirudo medicinalis. In previous experiments, focal application of L-glutamate or its non-NMDA agonists onto either the segmental swim-gating interneuron (cell 204) or the serotonergic Retzius cell resulted in prolonged excitation of the two cells and often in fictive swimming. Since brief stimulation of the subesophageal trigger interneuron (cell Tr1) evoked a similar response, we investigated the role of glutamate at these synapses. Kynurenic acid and two non-NMDA antagonists, 6,7-dinitroquinoxaline-2,3-dione (DNQX) and Joro spider toxin, effectively suppressed (1) the sustained activation of cell 204 and the Retzius cell following cell Tr1 stimulation and (2) the monosynaptic connection from cell Tr1 to cell 204 and the Retzius cell, but did not block spontaneous or DP nerve-activated swimming. Other glutamate blockers, including gamma-D-glutamylaminomethyl sulfonic acid, L(+)-2-amino-3-phosphonoproprionic acid and 2-amino-5-phosphonopentanoic acid, were ineffective. DNQX also blocked both indirect excitation of cell 204 and direct depolarization of cell Tr1 in response to mechanosensory P cell stimulation. Our findings show the involvement of non-NMDA receptors in activating the swim motor program at two levels: (1) P cell input to cell Tr1 and (2) cell Tr1 input to cell 204, and reveal an essential role for glutamate in swim initiation via the cell Tr1 pathway.
Collapse
Affiliation(s)
- M S Thorogood
- Department of Biology, Bryn Mawr College, PA 19010, USA
| | | |
Collapse
|
46
|
|
47
|
Akoev GN. Electroreceptors: involvement of excitatory amino acids in synaptic transmission. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1995; 110:217-22. [PMID: 7712065 DOI: 10.1016/0300-9629(94)00146-k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electroreceptors are present in the skin of fish, amphibia and lower mammals, e.g. platypus. Animals use these receptors for detecting weak electric and magnetic fields. Electroreceptors of fish and amphibia belong to the secondary receptors in which the primary transduction is carried out by neuroepithelial hair cells that transmit synaptically to the afferent nerve fibers. The role of excitatory amino acids in synaptic transmission in electroreceptors is the subject of this review.
Collapse
Affiliation(s)
- G N Akoev
- I.P. Pavlov Institute of Physiology, St. Petersburg, Russia
| |
Collapse
|
48
|
Mueller AL, Roeloffs R, Jackson H. Chapter 2 Pharmacology of Polyamine Toxins from Spiders and Wasps. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0099-9598(08)60286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
49
|
Gomes de Souza Berlinck R. Some aspects of guanidine secondary metabolites. FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE = PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS. PROGRES DANS LA CHIMIE DES SUBSTANCES ORGANIQUES NATURELLES 1995; 66:119-295. [PMID: 8847007 DOI: 10.1007/978-3-7091-9363-1_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
50
|
Chapter 1 Polyamine Toxins from Spiders and Wasps. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s0099-9598(08)60276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|