1
|
Paik SK, Kwak WK, Bae JY, Na YK, Park SY, Yi HW, Ahn DK, Ottersen OP, Yoshida A, Bae YC. Development of γ-aminobutyric acid-, glycine-, and glutamate-immunopositive boutons on rat jaw-opening motoneurons. J Comp Neurol 2012; 520:1212-26. [DOI: 10.1002/cne.22771] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
2
|
Li Z, Ge S, Zhang F, Zhang T, Mizuno N, Hioki H, Kaneko T, Gao G, Li J. Distribution of Gephyrin-Immunoreactivity in the Trigeminal Motor Nucleus: An Immunohistochemical Study in Rats. Anat Rec (Hoboken) 2012; 295:641-51. [DOI: 10.1002/ar.22426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/10/2012] [Indexed: 11/11/2022]
|
3
|
Ultrastructural Basis for Craniofacial Sensory Processing in The Brainstem. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011. [DOI: 10.1016/b978-0-12-385198-7.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
4
|
Takamatsu J, Inoue T, Tsuruoka M, Suganuma T, Furuya R, Kawawa T. Involvement of reticular neurons located dorsal to the facial nucleus in activation of the jaw-closing muscle in rats. Brain Res 2006; 1055:93-102. [PMID: 16087167 DOI: 10.1016/j.brainres.2005.06.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2005] [Revised: 06/27/2005] [Accepted: 06/29/2005] [Indexed: 11/18/2022]
Abstract
The location of excitatory premotor neurons for jaw-closing motoneurons was examined by the use of electrical and chemical stimulation and extracellular single-unit recording techniques in the anesthetized rat. Single-pulse electrical stimulation of the supratrigeminal region (SupV) and the reticular formation dorsal to the facial nucleus (RdVII) elicited masseter EMG response at mean (+/-SD) latencies of 2.22 +/- 0.59 ms and 3.10 +/- 1.14 ms, respectively. Microinjection (0.1-0.3 microl) of glutamate (50 mM) or kainate (0.5-100 microM) into RdVII increased masseter nerve activity in artificially ventilated and immobilized rats by 30.2 +/- 40.5% and 50.7 +/- 46.8% compared to baseline values, respectively. Forty reticular neurons were antidromically activated by stimulation of the ipsilateral trigeminal motor nucleus (MoV). Twenty neurons were found in RdVII, and the remaining 20 neurons were located in SupV, or areas adjacent to SupV or RdVII. Eleven neurons in RdVII responded to at least either passive jaw opening or light pressure applied to the teeth or tongue. Nine neurons responded to passive jaw opening. Five of the nine neurons responded to multiple stimulus categories. A monosynaptic excitatory projection from one neuron in RdVII was detected by spike-triggered averaging of the rectified masseter nerve activity. We suggest that reticular neurons in RdVII are involved in increasing masseter muscle activity and that excitatory premotor neurons for masseter motoneurons are likely located in this area. RdVII could be an important candidate for controlling activity of jaw-closing muscles via peripheral inputs.
Collapse
Affiliation(s)
- Junichi Takamatsu
- Department of Prosthodontics, Showa University School of Dentistry, Tokyo 145-8515, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Inoue M, Nozawa-Inoue K, Donga R, Yamada Y. Convergence of selected inputs from sensory afferents to trigeminal premotor neurons with possible projections to masseter motoneurons in the rabbit. Brain Res 2002; 957:183-91. [PMID: 12443994 DOI: 10.1016/s0006-8993(02)03662-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Peripheral input convergence on trigeminal premotor neurons in the vicinity of trigeminal motor nucleus has been investigated. Thirty neurons were identified by their antidromic responses to microstimulation of the masseteric subnucleus of trigeminal motor nucleus (NVmot-mass). Peripheral receptive fields were found in the buccal mucosae, periodontal ligaments, palate, tongue and vibrissae for 16 neurons located in the intertrigeminal area (NVint), supratrigeminal area (NVs), main sensory trigeminal nucleus (NVsnpr) and subnucleus gamma of the oral nucleus of the spinal trigeminal tract (NVspo-gamma). Eleven neurons in the NVint, NVs and NVspo-gamma responded to passive jaw opening: nine neurons were activated and two were inhibited. None of the neurons responded to both the orofacial mechanical stimulation and passive jaw opening. Forty-six percent of neurons (13 out of 28 tested) received inputs from the inferior alveolar nerve (IAN) and 53% of neurons (8 out of 15 tested) received inputs from the infraorbital nerve (ION). Out of 15 neurons tested for inputs from the IAN and ION, 7 neurons in the NVsnpr and NVspo-gamma received input from both. Sixteen percent of neurons (4 out of 25) received inputs from the masseteric nerve (MassN). None of the neurons with inputs from IAN and/or ION also received inputs from the MassN. We suggest that trigeminal premotor interneurons with projections to the NVmot-mass fall into two broad categories, those with inputs from the IAN and/or ION and those with inputs from the MassN, possibly muscle spindle afferents, and no neuron receiving inputs from both.
Collapse
Affiliation(s)
- Makoto Inoue
- Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan.
| | | | | | | |
Collapse
|
6
|
Bae YC, Choi BJ, Lee MG, Lee HJ, Park KP, Zhang LF, Honma S, Fukami H, Yoshida A, Ottersen OP, Shigenaga Y. Quantitative ultrastructural analysis of glycine- and gamma-aminobutyric acid-immunoreactive terminals on trigeminal alpha- and gamma-motoneuron somata in the rat. J Comp Neurol 2002; 442:308-19. [PMID: 11793336 DOI: 10.1002/cne.10092] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Detailed knowledge of the inhibitory input to trigeminal motoneurons is needed to understand better the central mechanisms of jaw movements. Here a quantitative analysis of terminals contacting somata of jaw-closing (JC) and jaw-opening (JO) alpha-motoneurons, and of JC gamma-motoneurons, was performed by use of serial sectioning and postembedding immunogold cytochemistry. For each type of motoneuron, the synaptic boutons were classified into four groups, i.e., immunonegative boutons or boutons immunoreactive to glycine only, to gamma-aminobutyric acid (GABA) only, or to both glycine and GABA. The density of immunolabeled boutons was much higher for the alpha- than for the gamma-motoneurons. In the alpha-motoneuron populations, the immunolabeled boutons were subdivided into one large group of boutons containing glycine-like immunoreactivity only, one group of intermediate size harboring both glycine- and GABA-like immunoreactivity, and a small group of boutons containing GABA-like immunoreactivity only. The percentage of immunolabeled boutons was higher for JC than JO alpha-motoneurons, the most pronounced difference being observed for glycine-like immunoreactivity. In contrast, on the somatic membrane of gamma-motoneurons, the three types of immunoreactive bouton occurred at similar frequencies. These results indicate that trigeminal motoneurons are strongly and differentially controlled by premotoneurons containing glycine and/or GABA and suggest that these neurons play an important role for the generation of masticatory patterns.
Collapse
Affiliation(s)
- Yong Chul Bae
- Department of Oral Anatomy, School of Dentistry, Kyungpook University, Taegu 700-422, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Shigenaga Y, Hirose Y, Yoshida A, Fukami H, Honma S, Bae YC. Quantitative ultrastructure of physiologically identified premotoneuron terminals in the trigeminal motor nucleus in the cat. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20001009)426:1<13::aid-cne2>3.0.co;2-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Bae YC, Nakamura T, Ihn HJ, Choi MH, Yoshida A, Moritani M, Honma S, Shigenaga Y. Distribution pattern of inhibitory and excitatory synapses in the dendritic tree of single masseter alpha-motoneurons in the cat. J Comp Neurol 1999; 414:454-68. [PMID: 10531539 DOI: 10.1002/(sici)1096-9861(19991129)414:4<454::aid-cne3>3.0.co;2-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Little is known about the differences in the distributions of inhibitory and excitatory synapses in the dendritic tree of single motoneurons in the brainstem and spinal cord. In this study, the distribution of gamma-aminobutyric acid (GABA)-, glycine-, and glutamate-like immunoreactivity in axon terminals on dendrites of cat masseter alpha-motoneurons, stained intracellularly with horseradish peroxidase, was examined by using postembedding immunogold histochemistry in serial ultrathin sections. The dendritic tree was divided into three segments: primary (Pd) and distal (Dd) dendrites and intermediate (Id) dendrites between the two segments. Quantitative analysis of 175, 279, and 105 boutons synapsing on 13 Pd, 54 Id, and 81 Dd, respectively, was performed. Fifty percent of the total number of studied boutons were immunopositive for GABA and/or glycine and 48% for glutamate. Among the former, 27% showed glycine immunoreactivity only and 14% were immunoreactive to both glycine and GABA. The remainder (9%) showed immunoreactivity for GABA only. As few as 3% of the boutons were immunonegative for the three amino acids. Most boutons immunoreactive to inhibitory amino acid(s) contained a mixture of spherical, oval, and flattened synaptic vesicles. Most boutons immunoreactive to excitatory amino acid contained clear, spherical, synaptic vesicles with a few dense-cored vesicles. When comparisons of the inhibitory and excitatory boutons were made between the three dendritic segments, the proportion of the inhibitory to the excitatory boutons was high in the Pd (60% vs. 37%) but somewhat low in the Id (46% vs. 52%) and Dd (44% vs. 53%). The percentage of synaptic covering and packing density of the inhibitory synaptic boutons decreased in the order Pd, Id, and Dd, but this trend was not applicable to the excitatory boutons. The present study provides possible evidence that the spatial distribution patterns of inhibitory and excitatory synapses are different in the dendritic tree of jaw-closing alpha-motoneurons.
Collapse
Affiliation(s)
- Y C Bae
- Kyungpook National Unversity School of Dentistry, Taegue 700-422, Korea
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Yoshida A, Hiraga T, Moritani M, Chen K, Takatsuki Y, Hirose Y, Chull Bae Y, Shigenaga Y. Morphologic characteristics of physiologically defined neurons in the cat trigeminal nucleus principalis. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981123)401:3<308::aid-cne2>3.0.co;2-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Nagase Y, Moritani M, Nakagawa S, Yoshida A, Takemura M, Zhang LF, Kida H, Shigenaga Y. Serotonergic axonal contacts on identified cat trigeminal motoneurons and their correlation with medullary raphe nucleus stimulation. J Comp Neurol 1997; 384:443-55. [PMID: 9254038 DOI: 10.1002/(sici)1096-9861(19970804)384:3<443::aid-cne9>3.0.co;2-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The innervation of the trigeminal motor nucleus by serotonergic fibers with cell bodies in the raphe nuclei pallidus and obscurus suggests that activation of this pathway may alter the excitability of trigeminal motoneurons. Thus, we recorded intracellular responses from cat jaw-closing (JC) andjaw-opening (JO) alpha-motoneurons evoked by raphe stimulation and used a combination of intracellular staining of horseradish peroxidase (HRP) and immunohistochemistry at the light and electron microscopic levels to examine the distribution of contacts made by serotonin (5-HT)-immunoreactive boutons on the two motoneurons types. Electrical stimulation applied to the nucleus raphe pallidus-obscurus complex induced a monosynaptic excitatory postsynaptic potential (EPSP) in JC (masseter) alpha-motoneurons and an EPSP with an action potential in JO (mylohyoid) alpha-motoneurons. The EPSP rise-times (time to peak) and half widths were significantly longer in the JC than in the JO motoneurons. The EPSPs were suppressed by systemic administration of methysergide (2 mg/kg). Six JC and seven JO alpha-motoneurons were well stained with HRP. Contacts were seen between 5-HT-immunoreactive boutons and the motoneurons. The JC motoneurons received a significantly larger number of the contacts than did the JO motoneurons. The contacts were distributed widely in the proximal three-fourths of the dendritic tree of JC motoneurons but were distributed on more proximal dendrites in the JO motoneurons. At the electron microscopic level, synaptic contacts made by 5-HT-immunoreactive boutons on motoneurons were identified. The present study demonstrated that JC motoneurons receive stronger 5-HT innervation, and this correlates with the fact that raphe stimulation caused larger EPSPs among these neurons than among JO motoneurons.
Collapse
Affiliation(s)
- Y Nagase
- Department of Oral Anatomy, Osaka University Faculty of Dentistry, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Yoshida A, Yasuda K, Dostrovsky JO, Bae YC, Takemura M, Shigenaga Y, Sessle BJ. Two major types of premotoneurons in the feline trigeminal nucleus oralis as demonstrated by intracellular staining with horseradish peroxidase. J Comp Neurol 1994; 347:495-514. [PMID: 7529265 DOI: 10.1002/cne.903470403] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previous studies suggest that neurons in the dorsomedial subdivisions of trigeminal nucleus oralis (Vo) may contribute to reflex control of jaw movements and to modulation of sensory information. The present study has addressed this possibility by the use of intracellular staining with horseradish peroxidase of physiologically identified neurons in Vo to examine functional and morphological properties of these neurons. Of 14 labeled neurons, eight had axon collaterals terminating exclusively in the dorsolateral subdivision of the trigeminal motor nucleus (DL neurons) and four in its ventromedial subdivision (VM neurons); axon collaterals of two neurons were not traced. Both groups of neurons sent terminal arbors into other nuclei of the lower brainstem. The DL neurons were distinguishable from the VM neurons in their receptive field (RF) location, neuronal position, somadendritic architecture, and projections to other brainstem nuclei. All neurons, except for two that were exclusively activated by noxious stimuli applied to the tongue, were responsive to light mechanical stimulation of peri- and intraoral structures. The RFs of the DL neurons were located in more posterior oral structures than those of the VM neurons. The RF of nearly all low-threshold DL neurons was located in the maxillary region, and that of the VM neurons, in contrast, involved the mandibular region. The VM neurons were located medial or ventral to the DL neurons. The soma size of the VM neurons was significantly larger than that of the DL neurons. Dendritic arbors of both groups could be separated into medial and lateral components. The ratio of the dendritic transverse areas in the medial vs. lateral component was significantly higher in the VM neurons than in the DL neurons. The DL neurons also issued collaterals that terminated in larger brainstem areas than those of the VM neurons. These observations provide new evidence on the morphological and functional properties of Vo neurons that contribute to reflex control of jaw and facial movements and modulation of sensory information.
Collapse
Affiliation(s)
- A Yoshida
- Department of Oral Anatomy, Osaka University Faculty of Dentistry, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Shigenaga Y, Yoshida A, Tsuru K, Mitsuhiro Y, Otani K, Cao CQ. Physiological and morphological characteristics of cat masticatory motoneurons--intracellular injection of HRP. Brain Res 1988; 461:238-56. [PMID: 3179716 DOI: 10.1016/0006-8993(88)90255-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The physiology and morphology of masticatory motoneurons of adult cats were examined by the methods of intracellular recording and intracellular injection of horseradish peroxidase. Masseter and jaw-opening motoneurons were identified by intracellular recordings of the antidromic response following stimulation of the masseter and mylohyoid nerves, respectively. An excitatory postsynaptic potential (EPSP) was recorded from masseter neurons by stimulation of the masseter nerve with stimulus intensity below threshold for antidromic response. In contrast, the EPSP was not recorded from jaw-opening motoneurons by stimulation of the mylohyoid nerve with stimulus intensity below threshold for antidromic response. Patterns of postsynaptic potentials (PSPs) in the masseter motoneurons following stimulation of the tooth pulp or periodontal afferents were classified into 4 types: hyperpolarization (n = 40), depolarization-hyperpolarization (n = 9), hyperpolarization-depolarization (n = 5), and depolarization with spike potentials (n = 10). On the other hand, patterns of the PSPs in the jaw-opening motoneurons following stimulation of the same afferents were classified into two types: depolarization with spike potentials (n = 19), and hyperpolarization (n = 5). Twenty-five masseter and 7 jaw-opening motoneurons and an intranuclear neuron were reconstructed from serial sections in the transverse plane. On the basis of dendritic morphology, the masseter motoneurons could be classified into two major groups, type I (n = 15) and type II (n = 9), whereas two neurons were found to constitute a separate category of the masseter motoneuron. The dendritic distributions of all the jaw-opening motoneurons examined were generally similar and there was no indication of the existence of subtypes, whereas there were 2 or 3 subgroups in type I and type II masseter motoneurons. Type I masseter neurons had primary dendrites which extended radially in all directions, and the whole profile of their dendritic trees presented a spherical and an egg-shaped appearance. In type II masseter neurons, the origin of primary dendrites was bipolar or tripolar, and the whole profile of their dendritic trees presented a hemispherical and mirror-imaged, funnel-shaped appearance. The other two masseter motoneurons had a particular dendritic tree which was much simpler in configuration, with less tapering or branching than those of other neurons examined. In contrast, the dendritic profiles of all the jaw-opening motoneurons were similarly organized and showed vertically oriented dendritic trees which were more developed in the dorsomedial than in the ventrolateral direction.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- Y Shigenaga
- Department of Oral Anatomy (1st Division), Hiroshima University School of Dentistry, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Shigenaga Y, Yoshida A, Mitsuhiro Y, Doe K, Suemune S. Morphology of single mesencephalic trigeminal neurons innervating periodontal ligament of the cat. Brain Res 1988; 448:331-8. [PMID: 3378154 DOI: 10.1016/0006-8993(88)91272-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The morphology of single neurons in the trigeminal mesencephalic nucleus (Vmes) that innervate periodontal ligament was studied in cats by the method of intraaxonal injection of horseradish peroxidase (HRP). Two kinds of Vmes neurons were distinguished on the basis of differences in axon profile and its central projection. The first type of Vmes neurons was unipolar in shape and its axon was divided into united (U), peripheral (P), and central axons (C). The U axon traveled caudally within the Vmes from the soma to the dorsolateral aspect of trigeminal motor nucleus (Vmo), where it split into the P and C axons with a T-shaped appearance. The P axon joined the spinal trigeminal tract across the trigeminal principal nucleus and ran within the tract and sensory root to exit the brainstem. The C axon traveled caudally within Probst's tract. All 3 axons issued axon collaterals. Axon collaterals from the U, P and the proximal C axons sent their terminal branches into the supra (Vsup) and intertrigeminal regions (Vint). Most axon collaterals from the C axon sent their terminal branches into the juxtatrigeminal regions (Vjuxta). The second type of Vmes neurons was bipolar and issued P and C axons. The C axon ran a short distance in the Vmes to leave the Vmes, and then it traveled caudolaterally in the rostrodorsomedial aspect of the Vmo. Finally, it entered in the Vmo and traveled caudally in the dorsolateral subdivision of the nucleus to its rostrocaudal mid-level. The C axon gave off massive axon collaterals.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Y Shigenaga
- Department of Oral Anatomy, Hiroshima University School of Dentistry, Japan
| | | | | | | | | |
Collapse
|
14
|
Takata M, Tomomune N. Properties of stereotyped series of postsynaptic potentials in hypoglossal motoneurons. Brain Res 1987; 426:358-66. [PMID: 3690327 DOI: 10.1016/0006-8993(87)90889-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A stereotyped series of postsynaptic potentials produced in cat hypoglossal motoneurons by stimulation of the cerebral cortex, the inferior alveolar nerve or the lingual nerve was studied. These include an excitatory postsynaptic potentials (EPSP) and subsequently 3 different types of inhibitory postsynaptic potentials (IPSPs). The first is a short-lasting IPSP which was blocked by strychnine administration. The second is a gamma-aminobutyric acid (GABA) IPSP which was blocked by picrotoxin administration. This IPSP was sensitive to membrane polarization and dependent on a conductance increase. The third is a long-duration hyperpolarizing potential which was enhanced by the injection of picrotoxin and insensitive to membrane polarization. Moreover, we have demonstrated that the amplitude of cortically induced EPSPs decreased greatly with depolarization.
Collapse
Affiliation(s)
- M Takata
- Department of Physiology, School of Dentistry, Tokushima University, Japan
| | | |
Collapse
|
15
|
Takata M, Tomomune N. Properties of postsynaptic potentials evoked in hypoglossal motoneurons by inferior alveolar nerve stimulation. Exp Neurol 1986; 93:117-27. [PMID: 3732455 DOI: 10.1016/0014-4886(86)90151-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The properties of excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) produced in cat hypoglossal motoneurons by inferior alveolar nerve stimulation were studied. The percentage magnitude of a short- and a long-lasting component in inferior alveolar-induced IPSPs was measured by application of double shocks separated by 80- to 90-ms intervals to the inferior alveolar nerve. As a result, the protruder motoneurons received synaptic input primarily from the afferent fibers in both the ipsilateral and the contralateral inferior alveolar nerve generating the long-lasting IPSP. In addition, the retractor motoneurons received afferent fibers from the bilateral inferior alveolar nerves to generate the short- and the long-lasting IPSP. With respect to the properties of EPSPs, we have demonstrated that the amplitude of inferior alveolar-induced EPSPs decreased greatly with depolarization.
Collapse
|
16
|
Dowman R, Rosenfeld JP. Operant conditioning of somatosensory evoked potential (SEP) amplitude in rats. II. Associated changes in reflex and continuous non-timelocked movements. Brain Res 1985; 333:213-22. [PMID: 3995294 DOI: 10.1016/0006-8993(85)91574-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Animals were rewarded for increasing (uptrain) or decreasing (downtrain) the amplitude of a 30 ms surface positive component of a somatosensory evoked potential (SEP) evoked by innocuous stimulation of the spinal trigeminal tract. The reflex movement produced by the evoking stimulus had a larger amplitude in uptraining than downtraining. This change in reflex amplitude suggests that operantly conditioning SEP amplitude was correlated with a change in innocuous somatosensory activity. There was no change in continuous non-timelocked movement associated with conditioning. This latter finding suggests that SEP conditioning is not necessarily mediated by such movement.
Collapse
|