Abstract
The roles of acetylcholine, dopamine, octopamine, tyramine, 5-hydroxytryptamine, histamine, glutamate, 4-aminobutanoic acid (gamma-aminobutyric acid) and a range of peptides as insect neurotransmitters are evaluated in terms of the criteria used to identify transmitters. Of the biogenic amines considered, there is good evidence that acetylcholine, dopamine, octopamine, 5-hydroxytryptamine, and histamine should be considered to be neurotransmitters, but the case for tyramine is less convincing at the moment. The evidence supporting neurotransmitter roles for glutamate and gamma-aminobutyric acid at specific insect synapses is overwhelming, but much work remains to be undertaken before the full significance of these molecules in the insect nervous system is appreciated. Attempts to characterise biogenic amine and amino acid receptors using pharmacological and molecular biological techniques have revealed considerable differences between mammalian and insect receptors. The number of insect neuropeptides isolated and identified has increased spectacularly in recent years, but genuine physiological or biochemical functions can be assigned to very few of these molecules. Of these, only proctolin fulfills the criteria expected of a neurotransmitter, and the recent discovery of proctolin receptor antagonists should enable the biology of this pentapeptide to be explored fully.
Collapse