Yaksh TL, Michener SR, Bailey JE, Harty GJ, Lucas DL, Nelson DK, Roddy DR, Go VL. Survey of distribution of substance P, vasoactive intestinal polypeptide, cholecystokinin, neurotensin, Met-enkephalin, bombesin and PHI in the spinal cord of cat, dog, sloth and monkey.
Peptides 1988;
9:357-72. [PMID:
2453858 DOI:
10.1016/0196-9781(88)90272-0]
[Citation(s) in RCA: 67] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Levels of substance P (sP), peptide-histidine-isoleucine (PHI), vasoactive intestinal polypeptide (VIP), cholecystokinin (CCK), neurotensin (NT), bombesin (BOM) and methionine-enkephalin (Met-Enk) like immunoreactivity were measured in cat, dog, primate and sloth cervical, thoracic, lumbar and sacral dorsal and ventral horns and dorsal root ganglia. The levels of peptides in the cat sacral cord and the principal peaks of immunoreactivity on a 10-60% acetonitrile gradient on a C18 reverse phase high performance liquid chromatography (HPLC) were sP (sP1-11: 369 ng/g), PHI (PHI: 271 ng/g), VIP (VIP1-28: 210 ng/g), Met-Enk (Met1-5 and extended forms: 257 ng/g), BOM (BOM1-10 and GRP1-27: 20 ng/g), CCK (CCK-8: 15 ng/g) and NT (NT1-13: 10 ng/g). Consideration of the rostrocaudal levels revealed an approximately even distribution with the exception of VIP and PHI which showed sacral/cervical ratios of 79 and 63. For sP, Met-Enk and BOM dorsal/ventral ratios were greater than 1 at all spinal levels. For VIP, PHI and CCK these ratios were greater than 1 only in the sacral cord. Dorsal root ganglion (DRG) levels of sP, VIP, PHI were readily measurable in single ganglia and covaried with the respective levels in the dorsal cord. Pooled samples of spinal ganglia and the trigeminal ganglia revealed that the relative levels of peptide immunoreactivity were: sP (25 ng/g); VIP (26 ng/g); PHI (28 ng/g); Met-Enk (6 ng/g); CCK (2 ng/g); NT (1 ng/g); and BOM (1 ng/g).
Collapse