Monahan JB, Michel J. Identification and characterization of an N-methyl-D-aspartate-specific L-[3H]glutamate recognition site in synaptic plasma membranes.
J Neurochem 1987;
48:1699-708. [PMID:
2883254 DOI:
10.1111/j.1471-4159.1987.tb05726.x]
[Citation(s) in RCA: 120] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Conditions have been developed for an L-[3H]glutamate binding assay in which 85-95% of the specific binding is to a site that corresponds to the N-methyl-D-aspartate subclass of acidic amino acid receptors. Incubation of synaptic plasma membranes with L-[3H]glutamate in 50 mM Tris/acetate, pH 7.4, for 2-20 min at 2 degrees C results in binding with pharmacological characteristics of the electrophysiologically defined N-methyl-D-aspartate receptor. The fraction of glutamate binding to this subclass of receptors, relative to the total, decreases with both increased time and temperature. This binding is reversible, is concentrated in the synaptic plasma membrane fraction, has a pH optimum of 7.0-7.4, and is linear with respect to tissue protein concentration. The binding is unaffected by 1 mM concentrations of the anions sulfate, chloride, bromide, thiocyanate, phosphate, acetate, nitrate, or carbonate and the monovalent cations potassium or ammonium. However sodium and the divalent cations copper, cobalt, zinc, cadmium, and manganese decrease binding to this N-methyl-D-aspartate site.
Collapse