1
|
Kwon KM, Pak JH, Jeon CJ. Immunocytochemical localization of the AMPA glutamate receptor subtype GluR2/3 in the squid optic lobe. Acta Histochem 2022; 124:151941. [PMID: 35963117 DOI: 10.1016/j.acthis.2022.151941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
As a major excitatory neurotransmitter in the cephalopod visual system, glutamate signaling is facilitated by ionotropic receptors, such as α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR). In cephalopods with large and well-developed brains, the optic lobes (OL) mainly process visual inputs and are involved in learning and memory. Although the presence of AMPAR in squid OL has been reported, the organization of specific AMPAR-containing neurons remains unknown. This study aimed to investigate the immunocytochemical localization of the AMPA glutamate receptor subtype 2/3-immunoreactive (GluR2/3-IR) neurons in the OL of Pacific flying squid (Tordarodes pacificus). Morphologically diverse GluR2/3-IR neurons were predominantly located in the tangential zone of the medulla. Medium-to-large GluR2/3-IR neurons were also detected. The distribution patterns and cell morphologies of calcium-binding protein (CBP)-IR neurons, specifically calbindin-D28K (CB)-, calretinin (CR)-, and parvalbumin (PV)-IR neurons, were similar to those of GluR2/3-IR neurons. However, two-color immunofluorescence revealed that GluR2/3-IR neurons did not colocalize with the CBP-IR neurons. Furthermore, the specific localizations and diverse types of GluR2/3-IR neurons that do not express CB, CR, or PV in squid OL were determined. These findings further contribute to the existing data on glutamatergic visual systems and provide new insights for understanding the visual processing mechanisms in cephalopods.
Collapse
Affiliation(s)
- Kyung-Min Kwon
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Republic of Korea; Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Hong Pak
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Republic of Korea; Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
2
|
Bellier JP, Xie Y, Farouk SM, Sakaue Y, Tooyama I, Kimura H. Immunohistochemical and biochemical evidence for the presence of serotonin-containing neurons and nerve fibers in the octopus arm. Brain Struct Funct 2017; 222:3043-3061. [PMID: 28247020 DOI: 10.1007/s00429-017-1385-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/08/2017] [Indexed: 01/08/2023]
Abstract
The octopus arm contains a tridimensional array of muscles with a massive sensory-motor system. We herein provide the first evidence for the existence of serotonin (5-HT) in the octopus arm nervous system and investigated its distribution using immunohistochemistry. 5-HT-like immunoreactive (5-HT-lir) nerve cell bodies were exclusively localized in the cellular layer of the axial nerve cord. Those cell bodies emitted 5-HT-lir nerve fibers in the direction of the sucker, the intramuscular nerves cords, the ganglion of the sucker, and the intrinsic musculature. Others 5-HT-lir nerve fibers were observed in various tissues, including the cerebrobrachial tract, the skin, and the blood vessels. 5-HT was detected by high-performance liquid chromatography in various regions of the octopus arm at levels matching the density of 5-HT-lir staining. The absence of 5-HT-lir interconnections between the cerebrobrachial tract and the other components of the axial nerve cord suggests that two types of 5-HT-lir innervation exist in the arm. One type, which originates from the brain, may innervate the periphery through the cerebrobrachial tract. Another type, which originates in the cellular layer of the axial nerve cord, may form an intrinsic network in the arm. In addition, 5-HT-lir fibers likely emitted from the neuropil of the axial nerve cord were found to project into cells showing staining for peripheral choline acetyltransferase, a marker of sensory cells of the sucker. Taken together, these observations suggest that intrinsic 5-HT-lir innervation may participate in the sensory transmission in the octopus arm.
Collapse
Affiliation(s)
- Jean-Pierre Bellier
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.
| | - Yu Xie
- Life Science Research Center, Beihua University, Jilin, 132013, China
| | - Sameh Mohamed Farouk
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Yuko Sakaue
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Hiroshi Kimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
3
|
Casini A, Vaccaro R, D'Este L, Sakaue Y, Bellier JP, Kimura H, Renda TG. Immunolocalization of choline acetyltransferase of common type in the central brain mass of Octopus vulgaris. Eur J Histochem 2012; 56:e34. [PMID: 23027350 PMCID: PMC3493980 DOI: 10.4081/ejh.2012.e34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 11/23/2022] Open
Abstract
Acetylcholine, the first neurotransmitter to be identified in the vertebrate frog, is widely distributed among the animal kingdom. The presence of a large amount of acetylcholine in the nervous system of cephalopods is well known from several biochemical and physiological studies. However, little is known about the precise distribution of cholinergic structures due to a lack of a suitable histochemical technique for detecting acetylcholine. The most reliable method to visualize the cholinergic neurons is the immunohistochemical localization of the enzyme choline acetyltransferase, the synthetic enzyme of acetylcholine. Following our previous study on the distribution patterns of cholinergic neurons in the Octopus vulgaris visual system, using a novel antibody that recognizes choline acetyltransferase of the common type (cChAT), now we extend our investigation on the octopus central brain mass. When applied on sections of octopus central ganglia, immunoreactivity for cChAT was detected in cell bodies of all central brain mass lobes with the notable exception of the subfrontal and subvertical lobes. Positive varicosed nerves fibers where observed in the neuropil of all central brain mass lobes.
Collapse
Affiliation(s)
- A Casini
- Laboratory of Immunohistochemistry Tindaro G. Renda Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
4
|
Wollesen T, Sukhsangchan C, Seixas P, Nabhitabhata J, Wanninger A. Analysis of neurotransmitter distribution in brain development of benthic and pelagic octopod cephalopods. J Morphol 2012; 273:776-90. [PMID: 22461086 DOI: 10.1002/jmor.20023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/08/2012] [Accepted: 02/20/2012] [Indexed: 12/18/2022]
Abstract
The database on neurotransmitter distribution during central nervous system development of cephalopod mollusks is still scarce. We describe the ontogeny of serotonergic (5-HT-ir) and FMRFamide-like immunoreactive (Fa-lir) neurons in the central nervous system of the benthic Octopus vulgaris and Fa-lir distribution in the pelagic Argonauta hians. Comparing our data to previous studies, we aim at revealing shared immunochemical domains among coleoid cephalopods, i.e., all cephalopods except nautiluses. During development of O. vulgaris, 5-HT-ir and Fa-lir elements occur relatively late, namely during stage XII, when the brain neuropils are already highly differentiated. In stage XII-XX individuals, Fa-lir cell somata are located in the middle and posterior subesophageal mass and in the optic, posterior basal, and superior buccal lobes. 5-HT is predominately expressed in cell somata of the superior buccal, anterior basal, and optic lobes, as well as in the subesophageal mass. The overall population of Fa-lir neurons is larger than the one expressing 5-HT. Fa-lir elements are distributed throughout homologous brain areas of A. hians and O. vulgaris. We identified neuronal subsets with similar cell number and immunochemical phenotype in coleoids. These are located in corresponding brain regions of developmental stages and adults of O. vulgaris, A. hians, and the decapod squid Idiosepius notoides. O. vulgaris and I. notoides exhibit numerous 5-HT-ir cell somata in the superior buccal lobes but none or very few in the inferior buccal lobes. The latter have previously been homologized to the gastropod buccal ganglia, which also lack 5-HT-ir cell somata in euthyneuran gastropods. Among coleoids, 5-HT-ir neuronal subsets, which are located ventrally to the lateral anterior basal lobes and in the anterior middle subesophageal mass, are candidates for homologous subsets. Contrary to I. notoides, octopods exhibit Fa-lir cell somata ventrally to the brachial lobes and 5-HT-ir cell somata close to the stellate ganglia.
Collapse
Affiliation(s)
- Tim Wollesen
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Vienna 1090, Austria
| | | | | | | | | |
Collapse
|
5
|
Wollesen T, Degnan BM, Wanninger A. Expression of serotonin (5-HT) during CNS development of the cephalopod mollusk, Idiosepius notoides. Cell Tissue Res 2010; 342:161-78. [PMID: 20976473 DOI: 10.1007/s00441-010-1051-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 08/18/2010] [Indexed: 10/18/2022]
Abstract
Cephalopods are unique among mollusks in exhibiting an elaborate central nervous system (CNS) and remarkable cognitive abilities. Despite a profound knowledge of the neuroanatomy and neurotransmitter distribution in their adult CNS, little is known about the expression of neurotransmitters during cephalopod development. Here, we identify the first serotonin-immunoreactive (5-HT-ir) neurons during ontogeny and describe the establishment of the 5-HT system in the pygmy squid, Idiosepius notoides. Neurons that are located dorsally to each optic lobe are the first to express 5-HT, albeit only when the lobular neuropils are already quite elaborated. Later, 5-HT is expressed in almost all lobes, with most 5-HT-ir cell somata appearing in the subesophageal mass. Further lobes with numerous 5-HT-ir cell somata are the subvertical and posterior basal lobes and the optic and superior buccal lobes. Hatching squids possess more 5-HT-ir neurons, although the proportions between the individual brain lobes remain the same. The majority of 5-HT-ir cell somata appears to be retained in the adult CNS. The overall distribution of 5-HT-ir elements within the CNS of adult I. notoides resembles that of adult Octopus vulgaris and Sepia officinalis. The superior frontal lobe of all three species possesses few or no 5-HT-ir cell somata, whereas the superior buccal lobe comprises many cell somata. The absence of 5-HT-ir cell somata in the inferior buccal lobes of cephalopods and the buccal ganglia of gastropods may constitute immunochemical evidence of their homology. This integrative work forms the basis for future studies comparing molluscan, lophotrochozoan, ecdysozoan, and vertebrate brains.
Collapse
Affiliation(s)
- Tim Wollesen
- Research Group for Comparative Zoology, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | | | | |
Collapse
|
6
|
Distribution of oxytocin-like and vasopressin-like immunoreactivities within the central nervous system of the cuttlefish, Sepia officinalis. Cell Tissue Res 2009; 336:249-66. [DOI: 10.1007/s00441-009-0763-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 01/14/2009] [Indexed: 02/03/2023]
|
7
|
Abstract
The chromatophores of cephalopods differ fundamentally from those of other animals: they are neuromuscular organs rather than cells and are not controlled hormonally. They constitute a unique motor system that operates upon the environment without applying any force to it. Each chromatophore organ comprises an elastic sacculus containing pigment, to which is attached a set of obliquely striated radial muscles, each with its nerves and glia. When excited the muscles contract, expanding the chromatophore; when they relax, energy stored in the elastic sacculus retracts it. The physiology and pharmacology of the chromatophore nerves and muscles of loliginid squids are discussed in detail. Attention is drawn to the multiple innervation of dorsal mantle chromatophores, of crucial importance in pattern generation. The size and density of the chromatophores varies according to habit and lifestyle. Differently coloured chromatophores are distributed precisely with respect to each other, and to reflecting structures beneath them. Some of the rules for establishing this exact arrangement have been elucidated by ontogenetic studies. The chromatophores are not innervated uniformly: specific nerve fibres innervate groups of chromatophores within the fixed, morphological array, producing 'physiological units' expressed as visible 'chromatomotor fields'. The chromatophores are controlled by a set of lobes in the brain organized hierarchically. At the highest level, the optic lobes, acting largely on visual information, select specific motor programmes (i.e. body patterns); at the lowest level, motoneurons in the chromatophore lobes execute the programmes, their activity or inactivity producing the patterning seen in the skin. In Octopus vulgaris there are over half a million neurons in the chromatophore lobes, and receptors for all the classical neurotransmitters are present, different transmitters being used to activate (or inhibit) the different colour classes of chromatophore motoneurons. A detailed understanding of the way in which the brain controls body patterning still eludes us: the entire system apparently operates without feedback, visual or proprioceptive. The gross appearance of a cephalopod is termed its body pattern. This comprises a number of components, made up of several units, which in turn contains many elements: the chromatophores themselves and also reflecting cells and skin muscles. Neural control of the chromatophores enables a cephalopod to change its appearance almost instantaneously, a key feature in some escape behaviours and during agonistic signalling. Equally important, it also enables them to generate the discrete patterns so essential for camouflage or for signalling. The primary function of the chromatophores is camouflage. They are used to match the brightness of the background and to produce components that help the animal achieve general resemblance to the substrate or break up the body's outline. Because the chromatophores are neurally controlled an individual can, at any moment, select and exhibit one particular body pattern out of many. Such rapid neural polymorphism ('polyphenism') may hinder search-image formation by predators. Another function of the chromatophores is communication. Intraspecific signalling is well documented in several inshore species, and interspecific signalling, using ancient, highly conserved patterns, is also widespread. Neurally controlled chromatophores lend themselves supremely well to communication, allowing rapid, finely graded and bilateral signalling.
Collapse
|
8
|
|
9
|
Abstract
This paper presents the first evidence that some neurons in the octopus CNS contain delta-amino butyric acid (GABA). Using conventional immunohistochemical methods with appropriate controls, we obtained positive staining with an antibody to GABA in fibres in the neuropil of many lobes of the brain of the northern octopus Eledone cirrhosa. In several lobes cell bodies were also stained. Staining was not uniformly distributed in the brain nor within a particular lobe: some regions stained strongly, others not at all. These findings suggest that GABA should be added to the already long list of putative neurotransmitters in the cephalopod CNS.
Collapse
Affiliation(s)
- C J Cornwell
- Department of Animal and Plant Sciences, Sheffield University, UK
| | | | | |
Collapse
|
10
|
Yamaguchi T, Yamagata A. Serotonergic ligand binding in aging brain of experimental animals. Neurochem Res 1991; 16:469-73. [PMID: 1833658 DOI: 10.1007/bf00965568] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although the use of aging experimental animals for studying serotonergic neuronal changes is limited because of species differences, cholinergic neuronal deterioration does appear to be a feature common to mammalian aging brains. In the present study, a recently introduced experimental animal, Suncus murinus (house musk shrew, an insectivore classified as being at the stem of the mammalian phylogenic tree) which in certain physiological characteristics is more closely related to the primate than is the rat, was used as an experimental animal model for serotonergic neuronal deterioration in aging brain. We examined the changes in binding to the membrane fraction of aging brain cortex of the experimental animals Suncus and Fischer rat of the serotonergic ligands, 5-HT, imipramine, and 8-OH-DPAT. Morphological study of the brain stem including the Nucleus raphae by immunohistochemical staining demonstrated that in Suncus all the serotonergic ligands had decreasing affinity to the membrane of aging brain; binding of 8-OH-DPAT and imipramine decreased to a greater extent than that of 5-HT. In contrast, the aging rat brain showed no appreciable change in the binding of serotonergic ligands.
Collapse
Affiliation(s)
- T Yamaguchi
- Department of Biochemistry, Tokyo Women's Medical College, Japan
| | | |
Collapse
|
11
|
Kito-Yamashita T, Haga C, Hirai K, Uemura T, Kondo H, Kosaka K. Localization of serotonin immunoreactivity in cephalopod visual system. Brain Res 1990; 521:81-8. [PMID: 2207679 DOI: 10.1016/0006-8993(90)91527-n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The distribution of 5-HT-like immunoreactivity in paraformaldehyde-fixed sections of retina, optic nerve and the optic lobe of Octopus vulgaris was studied by both immunofluorescence and avidin-biotin complex (ABC) immunohistochemical methods utilizing polyclonal antibodies to 5-HT. Some immunoreactive serotonin-containing cells were demonstrated in the retinal plexus, optic nerve, the ciliary body and the lens-generating tissue by both methods. An analysis of dissected retina and optic nerve of Octopus vulgaris by high pressure liquid chromatography (HPLC) with an electrochemical detector (ECD) also showed the presence of 5-HT. In the optic lobe, three 5-HT-immunoreactive bands in the plexiform layer of the cortex were clearly immunostained, and in the medulla both the cell islands and the neuropil contained some cells immunostained by both fluorescein isothiocyanate (FITC) and ABC methods. This is the first report on the systemic immunocytochemical visualization of 5-HT-containing cells and/or fibers in the cephalopod visual system.
Collapse
Affiliation(s)
- T Kito-Yamashita
- Department of Neuropathology, Psychiatric Research Institute, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Fiedler A, Schipp R. The effects of biogenic monoamines and related agonists and antagonists on the isolated, perfused branchial heart of sepia officinalis L. (cephalopoda). ACTA ACUST UNITED AC 1990. [DOI: 10.1016/0742-8413(90)90174-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
|