1
|
Wai G, Zdunowski S, Zhong H, Nielson JL, Ferguson AR, Strand SC, Moseanko R, Hawbecker S, Nout-Lomas YS, Rosenzweig ES, Beattie MS, Bresnahan JC, Tuszynski MH, Roy RR, Edgerton VR. Emergence of functionally aberrant and subsequent reduction of neuromuscular connectivity and improved motor performance after cervical spinal cord injury in Rhesus. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1205456. [PMID: 37378049 PMCID: PMC10291623 DOI: 10.3389/fresc.2023.1205456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Introduction The paralysis that occurs after a spinal cord injury, particularly during the early stages of post-lesion recovery (∼6 weeks), appears to be attributable to the inability to activate motor pools well beyond their motor threshold. In the later stages of recovery, however, the inability to perform a motor task effectively can be attributed to abnormal activation patterns among motor pools, resulting in poor coordination. Method We have tested this hypothesis on four adult male Rhesus monkeys (Macaca mulatta), ages 6-10 years, by recording the EMG activity levels and patterns of multiple proximal and distal muscles controlling the upper limb of the Rhesus when performing three tasks requiring different levels of skill before and up to 24 weeks after a lateral hemisection at C7. During the recovery period the animals were provided routine daily care, including access to a large exercise cage (5' × 7' × 10') and tested every 3-4 weeks for each of the three motor tasks. Results At approximately 6-8 weeks the animals were able to begin to step on a treadmill, perform a spring-loaded task with the upper limb, and reaching, grasping, and eating a grape placed on a vertical stick. The predominant changes that occurred, beginning at ∼6-8 weeks of the recovery of these tasks was an elevated level of activation of most motor pools well beyond the pre-lesion level. Discussion As the chronic phase progressed there was a slight reduction in the EMG burst amplitudes of some muscles and less incidence of co-contraction of agonists and antagonists, probably contributing to an improved ability to selectively activate motor pools in a more effective temporal pattern. Relative to pre-lesion, however, the EMG patterns even at the initial stages of recovery of successfully performing the different motor tasks, the level of activity of most muscle remained higher. Perhaps the most important concept that emerges from these data is the large combinations of adaptive strategies in the relative level of recruitment and the timing of the peak levels of activation of different motor pools can progressively provide different stages to regain a motor skill.
Collapse
Affiliation(s)
- Gregory Wai
- Departments of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sharon Zdunowski
- Departments of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hui Zhong
- Rancho Los Amigos National Rehabilitation Center, Rancho Research Institute, Downey, CA, United States
| | - Jessica L. Nielson
- Department of Psychiatry & Behavioral Sciences and the Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States
| | - Adam R. Ferguson
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Sarah C. Strand
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Rod Moseanko
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Stephanie Hawbecker
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Yvette S. Nout-Lomas
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | | | - Michael S. Beattie
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Jacqueline C. Bresnahan
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Mark H. Tuszynski
- Veterans Administration Medical Center, La Jolla, CA, United States
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, United States
| | - Roland R. Roy
- Departments of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - V. Reggie Edgerton
- Rancho Los Amigos National Rehabilitation Center, Rancho Research Institute, Downey, CA, United States
- Institut Guttmann, Hospital de Neurorehabilitacio, Universitat Autonoma de Barcelona, Badalona, Spain
- Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
2
|
Harnie J, Audet J, Mari S, Lecomte CG, Merlet AN, Genois G, Rybak IA, Prilutsky BI, Frigon A. State- and Condition-Dependent Modulation of the Hindlimb Locomotor Pattern in Intact and Spinal Cats Across Speeds. Front Syst Neurosci 2022; 16:814028. [PMID: 35221937 PMCID: PMC8863752 DOI: 10.3389/fnsys.2022.814028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 12/30/2022] Open
Abstract
Locomotion after complete spinal cord injury (spinal transection) in animal models is usually evaluated in a hindlimb-only condition with the forelimbs suspended or placed on a stationary platform and compared with quadrupedal locomotion in the intact state. However, because of the quadrupedal nature of movement in these animals, the forelimbs play an important role in modulating the hindlimb pattern. This raises the question: whether changes in the hindlimb pattern after spinal transection are due to the state of the system (intact versus spinal) or because the locomotion is hindlimb-only. We collected kinematic and electromyographic data during locomotion at seven treadmill speeds before and after spinal transection in nine adult cats during quadrupedal and hindlimb-only locomotion in the intact state and hindlimb-only locomotion in the spinal state. We attribute some changes in the hindlimb pattern to the spinal state, such as convergence in stance and swing durations at high speed, improper coordination of ankle and hip joints, a switch in the timing of knee flexor and hip flexor bursts, modulation of burst durations with speed, and incidence of bi-phasic bursts in some muscles. Alternatively, some changes relate to the hindlimb-only nature of the locomotion, such as paw placement relative to the hip at contact, magnitude of knee and ankle yield, burst durations of some muscles and their timing. Overall, we show greater similarity in spatiotemporal and EMG variables between the two hindlimb-only conditions, suggesting that the more appropriate pre-spinal control is hindlimb-only rather than quadrupedal locomotion.
Collapse
Affiliation(s)
- Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Angèle N. Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gabriel Genois
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
- *Correspondence: Alain Frigon,
| |
Collapse
|
3
|
Abstract
When animals walk overground, mechanical stimuli activate various receptors located in muscles, joints, and skin. Afferents from these mechanoreceptors project to neuronal networks controlling locomotion in the spinal cord and brain. The dynamic interactions between the control systems at different levels of the neuraxis ensure that locomotion adjusts to its environment and meets task demands. In this article, we describe and discuss the essential contribution of somatosensory feedback to locomotion. We start with a discussion of how biomechanical properties of the body affect somatosensory feedback. We follow with the different types of mechanoreceptors and somatosensory afferents and their activity during locomotion. We then describe central projections to locomotor networks and the modulation of somatosensory feedback during locomotion and its mechanisms. We then discuss experimental approaches and animal models used to investigate the control of locomotion by somatosensory feedback before providing an overview of the different functional roles of somatosensory feedback for locomotion. Lastly, we briefly describe the role of somatosensory feedback in the recovery of locomotion after neurological injury. We highlight the fact that somatosensory feedback is an essential component of a highly integrated system for locomotor control. © 2021 American Physiological Society. Compr Physiol 11:1-71, 2021.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Quebec, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Abstract
During locomotion, humans switch gaits from walking to running, and horses from walking to trotting to cantering to galloping, as they increase their movement rate. It is unknown whether gait change leading to a wider movement rate range is limited to locomotive-type behaviours, or instead is a general property of any rate-varying motor system. The tongue during speech provides a motor system that can address this gap. In controlled speech experiments, using phrases containing complex tongue-movement sequences, we demonstrate distinct gaits in tongue movement at different speech rates. As speakers widen their tongue-front displacement range, they gain access to wider speech-rate ranges. At the widest displacement ranges, speakers also produce categorically different patterns for their slowest and fastest speech. Speakers with the narrowest tongue-front displacement ranges show one stable speech-gait pattern, and speakers with widest ranges show two. Critical fluctuation analysis of tongue motion over the time-course of speech revealed these speakers used greater effort at the beginning of phrases—such end-state-comfort effects indicate speech planning. Based on these findings, we expect that categorical motion solutions may emerge in any motor system, providing that system with access to wider movement-rate ranges.
Collapse
|
5
|
The Spinal Control of Backward Locomotion. J Neurosci 2020; 41:630-647. [PMID: 33239399 DOI: 10.1523/jneurosci.0816-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/13/2023] Open
Abstract
Animal locomotion requires changing direction, from forward to backward. Here, we tested the hypothesis that sensorimotor circuits within the spinal cord generate backward locomotion and adjust it to task demands. We collected kinematic and electromyography (EMG) data during forward and backward locomotion at different treadmill speeds before and after complete spinal transection in six adult cats (three males and three females). After spinal transection, five/six cats performed backward locomotion, which required tonic somatosensory input in the form of perineal stimulation. One spinal cat performed forward locomotion but not backward locomotion while two others stepped backward but not forward. Spatiotemporal adjustments to increasing speed were similar in intact and spinal cats during backward locomotion and strategies were similar to forward locomotion, with shorter cycle and stance durations and longer stride lengths. Patterns of muscle activations, including muscle synergies, were similar for forward and backward locomotion in spinal cats. Indeed, we identified five muscle synergies that were similar during forward and backward locomotion. Lastly, spinal cats also stepped backward on a split-belt treadmill, with the left and right hindlimbs stepping at different speeds. Therefore, our results show that spinal sensorimotor circuits generate backward locomotion but require additional excitability compared with forward locomotion. Similar strategies for speed modulation and similar patterns of muscle activations and muscle synergies during forward and backward locomotion are consistent with a shared spinal locomotor network, with sensory feedback from the limbs controlling the direction.SIGNIFICANCE STATEMENT Animal locomotion requires changing direction, including forward, sideways and backward. This paper shows that the center controlling locomotion within the spinal cord can produce a backward pattern when instructed by sensory signals from the limbs. However, the spinal locomotor network requires greater excitability to produce backward locomotion compared with forward locomotion. The paper also shows that the spinal network controlling locomotion in the forward direction also controls locomotion in the backward direction.
Collapse
|
6
|
Alam M, Garcia-Alias G, Jin B, Keyes J, Zhong H, Roy RR, Gerasimenko Y, Lu DC, Edgerton VR. Electrical neuromodulation of the cervical spinal cord facilitates forelimb skilled function recovery in spinal cord injured rats. Exp Neurol 2017; 291:141-150. [PMID: 28192079 DOI: 10.1016/j.expneurol.2017.02.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/21/2017] [Accepted: 02/01/2017] [Indexed: 01/03/2023]
Abstract
Enabling motor control by epidural electrical stimulation of the spinal cord is a promising therapeutic technique for the recovery of motor function after a spinal cord injury (SCI). Although epidural electrical stimulation has resulted in improvement in hindlimb motor function, it is unknown whether it has any therapeutic benefit for improving forelimb fine motor function after a cervical SCI. We tested whether trains of pulses delivered at spinal cord segments C6 and C8 would facilitate the recovery of forelimb fine motor control after a cervical SCI in rats. Rats were trained to reach and grasp sugar pellets. Immediately after a dorsal funiculus crush at C4, the rats showed significant deficits in forelimb fine motor control. The rats were tested to reach and grasp with and without cervical epidural stimulation for 10weeks post-injury. To determine the best stimulation parameters to activate the cervical spinal networks involved in forelimb motor function, monopolar and bipolar currents were delivered at varying frequencies (20, 40, and 60Hz) concomitant with the reaching and grasping task. We found that cervical epidural stimulation increased reaching and grasping success rates compared to the no stimulation condition. Bipolar stimulation (C6- C8+ and C6+ C8-) produced the largest spinal motor-evoked potentials (sMEPs) and resulted in higher reaching and grasping success rates compared with monopolar stimulation (C6- Ref+ and C8- Ref+). Forelimb performance was similar when tested at stimulation frequencies of 20, 40, and 60Hz. We also found that the EMG activity in most forelimb muscles as well as the co-activation between flexor and extensor muscles increased post-injury. With epidural stimulation, however, this trend was reversed indicating that cervical epidural spinal cord stimulation has therapeutic potential for rehabilitation after a cervical SCI.
Collapse
Affiliation(s)
- Monzurul Alam
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, United States
| | - Guillermo Garcia-Alias
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, United States
| | - Benita Jin
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, United States
| | - Jonathan Keyes
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, United States
| | - Hui Zhong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, United States
| | - Roland R Roy
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, United States; Brain Research Institute, University of California, Los Angeles, CA 90095, United States
| | - Yury Gerasimenko
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, United States; Pavlov Institute of Physiology, St. Petersburg 199034, Russia; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420006, Russia
| | - Daniel C Lu
- Departments of Neurosurgery, University of California, Los Angeles, CA 90095, United States
| | - V Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, United States; Brain Research Institute, University of California, Los Angeles, CA 90095, United States; Departments of Neurobiology, University of California, Los Angeles, CA 90095, United States; Departments of Neuroscience, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
7
|
Dambreville C, Labarre A, Thibaudier Y, Hurteau MF, Frigon A. The spinal control of locomotion and step-to-step variability in left-right symmetry from slow to moderate speeds. J Neurophysiol 2015; 114:1119-28. [PMID: 26084910 DOI: 10.1152/jn.00419.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/17/2015] [Indexed: 01/22/2023] Open
Abstract
When speed changes during locomotion, both temporal and spatial parameters of the pattern must adjust. Moreover, at slow speeds the step-to-step pattern becomes increasingly variable. The objectives of the present study were to assess if the spinal locomotor network adjusts both temporal and spatial parameters from slow to moderate stepping speeds and to determine if it contributes to step-to-step variability in left-right symmetry observed at slow speeds. To determine the role of the spinal locomotor network, the spinal cord of 6 adult cats was transected (spinalized) at low thoracic levels and the cats were trained to recover hindlimb locomotion. Cats were implanted with electrodes to chronically record electromyography (EMG) in several hindlimb muscles. Experiments began once a stable hindlimb locomotor pattern emerged. During experiments, EMG and bilateral video recordings were made during treadmill locomotion from 0.1 to 0.4 m/s in 0.05 m/s increments. Cycle and stance durations significantly decreased with increasing speed, whereas swing duration remained unaffected. Extensor burst duration significantly decreased with increasing speed, whereas sartorius burst duration remained unchanged. Stride length, step length, and the relative distance of the paw at stance offset significantly increased with increasing speed, whereas the relative distance at stance onset and both the temporal and spatial phasing between hindlimbs were unaffected. Both temporal and spatial step-to-step left-right asymmetry decreased with increasing speed. Therefore, the spinal cord is capable of adjusting both temporal and spatial parameters during treadmill locomotion, and it is responsible, at least in part, for the step-to-step variability in left-right symmetry observed at slow speeds.
Collapse
Affiliation(s)
- Charline Dambreville
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Audrey Labarre
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Yann Thibaudier
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marie-France Hurteau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
8
|
Gad P, Choe J, Nandra MS, Zhong H, Roy RR, Tai YC, Edgerton VR. Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats. J Neuroeng Rehabil 2013; 10:2. [PMID: 23336733 PMCID: PMC3599040 DOI: 10.1186/1743-0003-10-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 01/07/2013] [Indexed: 01/07/2023] Open
Abstract
Background Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures, the lack of versatility in conventional stimulation technology, and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this paper, we outline the development of this technology and its use in the spinal rat model, demonstrating the ability to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats using this array. Methods We have designed a chronically implantable, rapidly switchable, high-density platinum based multi-electrode array that can be used to stimulate at 1–100 Hz and 1–10 V in both monopolar and bipolar configurations to examine the electrophysiological and behavioral effects of spinal cord epidural stimulation in complete spinal cord transected rats. Results In this paper, we have demonstrated the effectiveness of using high-resolution stimulation parameters in the context of improving motor recovery after a spinal cord injury. We observed that rats whose hindlimbs were paralyzed can stand and step when specific sets of electrodes of the array are stimulated tonically (40 Hz). Distinct patterns of stepping and standing were produced by stimulation of different combinations of electrodes on the array located at specific spinal cord levels and by specific stimulation parameters, i.e., stimulation frequency and intensity, and cathode/anode orientation. The array also was used to assess functional connectivity between the cord dorsum to interneuronal circuits and specific motor pools via evoked potentials induced at 1 Hz stimulation in the absence of any anesthesia. Conclusions Therefore the high density electrode array allows high spatial resolution and the ability to selectively activate different neural pathways within the lumbosacral region of the spinal cord to facilitate standing and stepping in adult spinal rats and provides the capability to evoke motor potentials and thus a means for assessing connectivity between sensory circuits and specific motor pools and muscles.
Collapse
Affiliation(s)
- Parag Gad
- Biomedical Engineering IDP, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Harkema S, Behrman A, Barbeau H. Evidence-based therapy for recovery of function after spinal cord injury. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:259-74. [PMID: 23098718 DOI: 10.1016/b978-0-444-52137-8.00016-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Physical rehabilitation for individuals coping with neurological deficits is evolving in response to a paradigm shift in thinking about the injured nervous system and using evidence as a basis for clinical decisions. Functional recovery from paralysis was generally believed to be nearly impossible, based on traditional expert opinion, and the priority was to develop compensation strategies to achieve functional goals in the home and community. Research, which began in animal models of neurological insult and is currently being translated to the clinic, has challenged these assumptions. The nervous system, whether intact or injured, has enormous potential for adaptation and modification, which can be harnessed to facilitate recovery. In this chapter we will briefly outline the history of physical rehabilitation as it concerns the development of strategies aimed at compensation, rather than functional recovery. Then we will discuss how new activity-based therapies are being developed, based on evidence from basic science and clinical evidence. One of these activity-based therapies is locomotor training, a program which relies on the intrinsic, automatic, control of locomotion by "lower" neural centers. A brief description of the program, including the four foundational principles, will be followed by an introduction to the use of robotics in these programs. Finally, we will discuss a second activity-based therapy, functional electrical stimulation (FES), and the future of physical rehabilitation for spinal cord injury and other neurological disorders.
Collapse
Affiliation(s)
- Susan Harkema
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.
| | | | | |
Collapse
|
10
|
Edgerton VR, Roy RR. Robotic training and spinal cord plasticity. Brain Res Bull 2009; 78:4-12. [PMID: 19010399 PMCID: PMC2907267 DOI: 10.1016/j.brainresbull.2008.09.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/02/2008] [Accepted: 09/22/2008] [Indexed: 02/01/2023]
Abstract
What is the potential for recovery of locomotor ability after a spinal cord injury? Both human and animal studies show that the spinal cord has the potential to reorganize and/or readjust to the loss of supraspinal input and utilize the remaining peripheral input to actually control stepping and standing. Motor training can be used to provide sensory ensembles within the spinal circuitry that are task-specific, i.e., step training improves stepping and stand training improves standing. A large component of this learning is a function of improved coordination of motor pools within and among limbs. The most successful type of training includes variability in the performed task, i.e., monotonous repetition of the exact same sensorimotor pattern results in "learned disuse". The use of robotics for training specific motor tasks has become more prevalent recently and we report here that using an "assist-as-needed" approach for step training after a severe spinal cord injury provides a high probability of successful rehabilitation. The "assist-as-needed" paradigm allows variability in the step trajectory within specific boundaries such that the robotic arms constrain the deviations in a manner mimicking that observed under normal, intact conditions. Another critical feature of robotic devices or step training seems to be the ability to integrate normal hip and leg motion as occurs during normal stepping. These types of robotic devices have the potential to aid therapists in the clinical setting and to enhance the ability of spinal cord injured individuals to regain the maximum locomotor ability possible.
Collapse
Affiliation(s)
- V Reggie Edgerton
- Department of Physiological Science, University of California, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
11
|
Abstract
BACKGROUND/OBJECTIVE In the course of examining spinal motor function in many hundreds of people with traumatic spinal cord injury, we encountered 6 individuals who developed involuntary and rhythmic contractions in muscles of their legs. Although there are many reports of unusual muscle activation patterns associated with different forms of myoclonus, we believe that certain aspects of the patterns seen with these 6 subjects have not been previously reported. These patterns share many features with those associated with a spinal central pattern generator for walking. METHODS Subjects in this case series had a history of chronic injury to the cervical spinal cord, resulting in either complete (ASIA A; n = 4) or incomplete (ASIA D; n = 2) quadriplegia. We used multi-channel electromyography recordings of trunk and leg muscles of each subject to document muscle activation patterns associated with different postures and as influenced by a variety of sensory stimuli. RESULTS Involuntary contractions spanned multiple leg muscles bilaterally, sometimes including weak abdominal contractions. Contractions were smooth and graded and were highly reproducible in rate for a given subject (contraction rates were 0.3-0.5 Hz). These movements did not resemble the brief rapid contractions (ie, "jerks") ascribed to some forms of spinal myoclonus. For all subjects, the onset of involuntary muscle contraction was dependent upon hip angle; contractions did not occur unless the hips (and knees) were extended (ie, subjects were supine). In the 4 ASIA A subjects, contractions occurred simultaneously in all muscles (agonists and antagonists) bilaterally. In sharp contrast, contractions in the 2 ASIA D subjects were reciprocal between agonists and antagonists within a limb and alternated between limbs, such that movements in these 2 subjects looked just like repetitive stepping. Finally, each of the 6 subjects had a distinct pathology of their spinal cord, nerve roots, distal trunk, or thigh; in 4 of these subjects, treatment of the pathology eliminated the involuntary movements. CONCLUSION The timing, distribution, and reliance upon hip angle suggest that these movement patterns reflect some elements of a central pattern generator for stepping. Emergence of these movements in persons with chronic spinal cord injury is extremely rare and appears to depend upon a combination of the more rostrally placed injury and a pathologic process leading to a further enhancement of excitability in the caudal spinal cord.
Collapse
Affiliation(s)
- Blair Calancie
- Department of Neurosurgery, SUNY Upstate Medical University, 750 E. Adams Street, IHP 1213, Syracuse, NY 13210, USA.
| |
Collapse
|
12
|
de Leon RD, Kubasak MD, Phelps PE, Timoszyk WK, Reinkensmeyer DJ, Roy RR, Edgerton VR. Using robotics to teach the spinal cord to walk. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2002; 40:267-73. [PMID: 12589925 DOI: 10.1016/s0165-0173(02)00209-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have developed a robotic device (e.g. the rat stepper) that can be used to impose programmed forces on the hindlimbs of rats during stepping. In the present paper we describe initial experiments using this robotic device to determine the feasibility of robotically assisted locomotor training in complete spinally transected adult rats. The present results show that using the robots to increase the amount of load during stance by applying a downward force on the ankle improved lift during swing. The trajectory pattern during swing was also improved when the robot arms were programmed to move the ankle in a path that approximated the normal swing trajectory. These results suggest that critical elements for successful training of hindlimb stepping in spinal cord injured rats can be implemented rigorously and evaluated using the rat stepper.
Collapse
Affiliation(s)
- Ray D de Leon
- Department of Kinesiology and Nutritional Science, California State University, 5151 State University Drive, Los Angeles, CA 90032, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The ability to perform stepping and standing can be reacquired after complete thoracic spinal cord transection in adult cats with appropriate, repetitive training. We now compare GAD(67)A levels in the spinal cord of cats that were trained to step or stand. We confirmed that a complete spinal cord transection at approximately T12 increases glutamic acid decarboxylase (GAD)(67) in both the dorsal and ventral horns of L5-L7. We now show that step training decreases these levels toward control. Kinematic analyses show that this downward modulation is correlated inversely with stepping ability. Compared with intact cats, spinal cord-transected cats had increased punctate GAD(67) immunoreactivity around neurons in lamina IX at cord segments L5-L7. Compared with spinal nontrained cats, those trained to stand on both hindlimbs had more GAD(67) puncta bilaterally in a subset of lamina IX neurons. In cats trained to stand unilaterally, this elevated staining pattern was limited to the trained side and extended for at least 4 mm in the L6 and L7 segments. The location of this asymmetric GAD(67) staining corresponded to the motor columns of primary knee flexors, which are minimally active during standing, perhaps because of extensor-activated inhibitory interneuron projections. The responsiveness to only a few days of motor training, as well as the GABA-synthesizing potential in the spinal cord, persists for at least 25 months after the spinal cord injury. This modulation is specific to the motor task that is performed repetitively and is closely linked to the ability of the animal to perform a specific motor task.
Collapse
|
14
|
Hodgson JA, Wichayanuparp S, Recktenwald MR, Roy RR, McCall G, Day MK, Washburn D, Fanton JW, Kozlovskaya I, Edgerton VR. Circadian force and EMG activity in hindlimb muscles of rhesus monkeys. J Neurophysiol 2001; 86:1430-44. [PMID: 11535689 DOI: 10.1152/jn.2001.86.3.1430] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Continuous intramuscular electromyograms (EMGs) were recorded from the soleus (Sol), medial gastrocnemius (MG), tibialis anterior (TA), and vastus lateralis (VL) muscles of Rhesus during normal cage activity throughout 24-h periods and also during treadmill locomotion. Daily levels of MG tendon force and EMG activity were obtained from five monkeys with partial datasets from three other animals. Activity levels correlated with the light-dark cycle with peak activities in most muscles occurring between 08:00 and 10:00. The lowest levels of activity generally occurred between 22:00 and 02:00. Daily EMG integrals ranged from 19 mV/s in one TA muscle to 3339 mV/s in one Sol muscle: average values were 1245 (Sol), 90 (MG), 65 (TA), and 209 (VL) mV/s. The average Sol EMG amplitude per 24-h period was 14 microV, compared with 246 microV for a short burst of locomotion. Mean EMG amplitudes for the Sol, MG, TA, and VL during active periods were 102, 18, 20, and 33 microV, respectively. EMG amplitudes that approximated recruitment of all fibers within a muscle occurred for 5-40 s/day in all muscles. The duration of daily activation was greatest in the Sol [151 +/- 45 (SE) min] and shortest in the TA (61 +/- 19 min). The results show that even a "postural" muscle such as the Sol was active for only approximately 9% of the day, whereas less active muscles were active for approximately 4% of the day. MG tendon forces were generally very low, consistent with the MG EMG data but occasionally reached levels close to estimates of the maximum force generating potential of the muscle. The Sol and TA activities were mutually exclusive, except at very low levels, suggesting very little coactivation of these antagonistic muscles. In contrast, the MG activity usually accompanied Sol activity suggesting that the MG was rarely used in the absence of Sol activation. The results clearly demonstrate a wide range of activation levels among muscles of the same animal as well as among different animals during normal cage activity.
Collapse
Affiliation(s)
- J A Hodgson
- Department of Physiological Science, University of California, 621 Charles E. Young Dr. South, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Edgerton VR, Roy RR, Hodgson JA, Day MK, Weiss J, Harkema SJ, Dobkin B, Garfinkel A, Konigsberg E, Koslovskaya I. How the science and engineering of spaceflight contribute to understanding the plasticity of spinal cord injury. ACTA ASTRONAUTICA 2000; 47:51-62. [PMID: 11543389 DOI: 10.1016/s0094-5765(00)00009-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Space programs support experimental investigations related to the unique environment of space and to the technological developments from many disciplines of both science and engineering that contribute to space studies. Furthermore, interactions between scientists, engineers and administrators, that are necessary for the success of any science mission in space, promote interdiscipline communication, understanding and interests which extend well beyond a specific mission. NASA-catalyzed collaborations have benefited the spinal cord rehabilitation program at UCLA in fundamental science and in the application of expertise and technologies originally developed for the space program. Examples of these benefits include: (1) better understanding of the role of load in maintaining healthy muscle and motor function, resulting in a spinal cord injury (SCI) rehabilitation program based on muscle/limb loading; (2) investigation of a potentially novel growth factor affected by spaceflight which may help regulate muscle mass; (3) development of implantable sensors, electronics and software to monitor and analyze long-term muscle activity in unrestrained subjects; (4) development of hardware to assist therapies applied to SCI patients; and (5) development of computer models to simulate stepping which will be used to investigate the effects of neurological deficits (muscle weakness or inappropriate activation) and to evaluate therapies to correct these deficiencies.
Collapse
Affiliation(s)
- V R Edgerton
- Brain Research Institute, University of California, Los Angeles,USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
A basic aspect of the neuronal control of quadrupedal locomotion of cat and of bipedal stance and gait of humans concerns the antigravity function of leg extensors. In humans proprioceptive reflexes involved in the maintenance of body equilibrium depend on the presence of contact forces opposing gravity. Extensor load receptors are thought to signal changes of the projection of body's centre of mass with respect to the feet. According to observations in the cat, this afferent input probably arises from Golgi tendon organs and represents a newly discovered function of these receptors in the regulation of stance and gait. From these experiments it can be concluded that during locomotion there is a closing of Ib inhibitory and an opening of Ib extensor facilitatory paths. In humans evidence for a significant contribution of load receptor contribution to the leg muscle activation came from immersion experiments. Compensatory leg muscle activation depends on the actual body weight. Also during gait the strength of leg extensor activation during the stance phase is load dependent. In patients with Parkinson's disease there is a reduced load sensitivity and decreased leg extensor activation, which might contribute to the movement disorder. Recent experiments in paraplegic patients show that the beneficial effects of a locomotor training critically depends on the initial degree of body unloading and reloading during the course of the training period.
Collapse
Affiliation(s)
- V Dietz
- Swiss Paraplegic Centre, University Hospital Balgrist, Forchstr. 340, CH-8008, Zurich, Switzerland.
| | | |
Collapse
|
17
|
de Leon RD, London NJ, Roy RR, Edgerton VR. Failure analysis of stepping in adult spinal cats. PROGRESS IN BRAIN RESEARCH 2000; 123:341-8. [PMID: 10635729 DOI: 10.1016/s0079-6123(08)62869-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- R D de Leon
- Department of Physiological Science, UCLA 90095, USA.
| | | | | | | |
Collapse
|
18
|
Abstract
How is load sensed by receptors, and how is this sensory information used to guide locomotion? Many insights in this domain have evolved from comparative studies since it has been realized that basic principles concerning load sensing and regulation can be found in a wide variety of animals, both vertebrate and invertebrate. Feedback about load is not only derived from specific load receptors but also from other types of receptors that previously were thought to have other functions. In the central nervous system of many species, a convergence is found between specific and nonspecific load receptors. Furthermore, feedback from load receptors onto central circuits involved in the generation of rhythmic locomotor output is commonly found. During the stance phase, afferent activity from various load detectors can activate the extensor part in such circuits, thereby providing reinforcing force feedback. At the same time, the flexion is suppressed. The functional role of this arrangement is that activity in antigravity muscles is promoted while the onset of the next flexion is delayed as long as the limb is loaded. This type of reinforcing force feedback is present during gait but absent in the immoble resting animal.
Collapse
Affiliation(s)
- J Duysens
- Laboratorium voor Medische Fysica en Biofysica, Nijmegen, The Netherlands
| | | | | |
Collapse
|
19
|
Abstract
Functional recovery after spinal cord injury likely depends, in part, on the reorganization of undamaged spinal circuitry. Segmental afferent input from the limbs remains largely intact after spinal injury and may provide an important source of activation and regulation of the spinal circuits that have lost descending input as a result of the injury. This purpose of this study was to investigate the contribution of cutaneous afferent inputs to the recovery of motor function after spinal injury in the chick. After lateral thoracic spinal hemisection, the motion of the ipsilateral limb was impaired during both walking and swimming. By 2 weeks postoperatively, limb motion recovered to preoperative values for walking but not for swimming. It was hypothesized that phasic afferent inputs experienced during walking, but not swimming, contributed to recovery of limb motion during walking. When a source of phasic cutaneous input was provided during swim training sessions, limb motion gradually improved to preoperative values. After 2 weeks of training, this improved motion was retained even after the source of cutaneous stimulation was removed. The proposed mechanism is an experience-dependent strengthening of the circuits activated during the improved limb motion, leading to a permanent change in limb action during swimming. Thus, the afferent inputs experienced during movement repetition are important during the acquisition of learned movements after spinal injury. These results are discussed in terms of behavioral, physiological, and anatomical evidence for spinal plasticity in other species. It is concluded that the spinal cord has significant plastic capabilities, and efforts should be directed toward maximizing the contribution of this plasticity to functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- G D Muir
- Department of Veterinary Physiological Sciences, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
20
|
de Leon RD, Tamaki H, Hodgson JA, Roy RR, Edgerton VR. Hindlimb locomotor and postural training modulates glycinergic inhibition in the spinal cord of the adult spinal cat. J Neurophysiol 1999; 82:359-69. [PMID: 10400964 DOI: 10.1152/jn.1999.82.1.359] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adult spinal cats were trained initially to perform either bipedal hindlimb locomotion on a treadmill or full-weight-bearing hindlimb standing. After 12 wk of training, stepping ability was tested before and after the administration (intraperitoneal) of the glycinergic receptor antagonist, strychnine. Spinal cats that were trained to stand after spinalization had poor locomotor ability as reported previously, but strychnine administration induced full-weight-bearing stepping in their hindlimbs within 30-45 min. In the cats that were trained to step after spinalization, full-weight-bearing stepping occurred and was unaffected by strychnine. Each cat then was retrained to perform the other task for 12 wk and locomotor ability was retested. The spinal cats that were trained initially to stand recovered the ability to step after they received 12 wk of treadmill training and strychnine was no longer effective in facilitating their locomotion. Locomotor ability declined in the spinal cats that were retrained to stand and strychnine restored the ability to step to the levels that were acquired after the step-training period. Based on analyses of hindlimb muscle electromyographic activity patterns and kinematic characteristics, strychnine improved the consistency of the stepping and enhanced the execution of hindlimb flexion during full-weight-bearing step cycles in the spinal cats when they were trained to stand but not when they were trained to step. The present findings provide evidence that 1) the neural circuits that generate full-weight-bearing hindlimb stepping are present in the spinal cord of chronic spinal cats that can and cannot step; however, the ability of these circuits to interpret sensory input to drive stepping is mediated at least in part by glycinergic inhibition; and 2) these spinal circuits adapt to the specific motor task imposed, and that these adaptations may include modifications in the glycinergic pathways that provide inhibition.
Collapse
Affiliation(s)
- R D de Leon
- Department of Physiological Science, University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
21
|
Recktenwald MR, Hodgson JA, Roy RR, Riazanski S, McCall GE, Kozlovskaya I, Washburn DA, Fanton JW, Edgerton VR. Effects of spaceflight on rhesus quadrupedal locomotion after return to 1G. J Neurophysiol 1999; 81:2451-63. [PMID: 10322080 DOI: 10.1152/jn.1999.81.5.2451] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Effects of spaceflight on Rhesus quadrupedal locomotion after return to 1G. Locomotor performance, activation patterns of the soleus (Sol), medial gastrocnemius (MG), vastus lateralis (VL), and tibialis anterior (TA) and MG tendon force during quadrupedal stepping were studied in adult Rhesus before and after 14 days of either spaceflight (n = 2) or flight simulation at 1G (n = 3). Flight simulation involved duplication of the spaceflight conditions and experimental protocol in a 1G environment. Postflight, but not postsimulation, electromyographic (EMG) recordings revealed clonus-like activity in all muscles. Compared with preflight, the cycle period and burst durations of the primary extensors (Sol, MG, and VL) tended to decrease postflight. These decreases were associated with shorter steps. The flexor (TA) EMG burst duration postflight was similar to preflight, whereas the burst amplitude was elevated. Consequently, the Sol:TA and MG:TA EMG amplitude ratios were lower following flight, reflecting a "flexor bias." Together, these alterations in mean EMG amplitudes reflect differential adaptations in motor-unit recruitment patterns of flexors and extensors as well as fast and slow motor pools. Shorter cycle period and burst durations persisted throughout the 20-day postflight testing period, whereas mean EMG returned to preflight levels by 17 days postflight. Compared with presimulation, the simulation group showed slight increases in the cycle period and burst durations of all muscles. Mean EMG amplitude decreased in the Sol, increased in the MG and VL, and was unchanged in the TA. Thus adaptations observed postsimulation were different from those observed postflight, indicating that there was a response unique to the microgravity environment, i.e., the modulations in the nervous system controlling locomotion cannot merely be attributed to restriction of movement but appear to be the result of changes in the interpretation of load-related proprioceptive feedback to the nervous system. Peak MG tendon force amplitudes were approximately two times greater post- compared with preflight or presimulation. Adaptations in tendon force and EMG amplitude ratios indicate that the nervous system undergoes a reorganization of the recruitment patterns biased toward an increased recruitment of fast versus slow motor units and flexor versus extensor muscles. Combined, these data indicate that some details of the control of motor pools during locomotion are dependent on the persistence of Earth's gravitational environment.
Collapse
Affiliation(s)
- M R Recktenwald
- Department of Physiological Science, University of California, Los Angeles, California 90095-1527, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mulder T, Duysens J. Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training. Gait Posture 1998; 7:251-263. [PMID: 10200392 DOI: 10.1016/s0966-6362(98)00010-1] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many studies have shown that a special treadmill training is effective in restoring locomotor function in cats with a complete spinal lesion. In the last few years it has become possible to regain some locomotor activity in patients suffering from a spinal cord injury through an intense training on a treadmill, as in cats. The ideas behind this approach owe much to insights derived from studies on spinalized animals. The neural system responsible for the locomotor restoration in both cats and humans is thought to be located at spinal level and is referred to as the central pattern generator. The evidence for such a spinal central pattern generator is reviewed in part 1. An important element in the treadmill training for both spinal injured cats and humans is the provision of adequate locomotor related sensory input, which can possibly activate and/or regulate the spinal locomotor circuitry. This part of the review deals with the afferent control of the central pattern generator. Furthermore, the results of treadmill training for both cats and humans and their relation to sensory input are treated. These insights can possibly contribute to the design of a better treadmill training program for the rehabilitation of gait in spinal cord injured patients. Copyright 1998 Elsevier Science B.V. All rights reserved
Collapse
|
23
|
de Leon RD, Hodgson JA, Roy RR, Edgerton VR. Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. J Neurophysiol 1998; 79:1329-40. [PMID: 9497414 DOI: 10.1152/jn.1998.79.3.1329] [Citation(s) in RCA: 376] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Locomotor performance, hindlimb muscle activity and gait patterns during stepping were studied in step-trained and non-trained female, adult spinal cats. Changes in locomotor characteristics relative to prespinalization bipedal and quadrupedal stepping patterns were used to evaluate the effects of step training on the capacity to execute full weight-bearing stepping after spinalization. Step training consisted of full weight-bearing stepping of the hindlimbs at the greatest range of treadmill speeds possible at any given stage of locomotor recovery. In the initial stages of training the limbs were assisted as needed to execute successful steps. On the basis of two behavioral criteria, the maximum speed of treadmill stepping and the number of successful steps per unit time, the ability to step was at least 3 times greater in animals trained to step versus those allowed to recover spontaneously, i.e., the non-trained. The greater success in stepping was reflected in several physiological and kinematic properties. For example, the amplitude of electromyograph (EMG) bursts in the tibialis anterior (an ankle dorsiflexor), the amount of extension at the end of both the stance (E3) and swing (E1) phases of the step cycle, and the amount of lift of the hindlimb during swing were greater in step-trained than in non-trained spinal cats. The changes that occurred in response to training reflected functional adaptations at specific phases of the step cycle, e.g., enhanced flexor and extensor function. The improved stepping capacity attributable to step training is interpreted as a change in the probability of the appropriate neurons being activated in a temporally appropriate manner. This interpretation, in turn, suggests that step training facilitated or reinforced the function of extant sensorimotor pathways rather than promoting the generation of additional pathways. These results show that the capacity of the adult lumbar spinal cord to generate full weight-bearing stepping over a range of speeds is defined, in large part, by the functional experience of the spinal cord after supraspinal connectivity has been eliminated. These results have obvious implications with regards to 1) the possibility of motor learning occurring in the spinal cord; 2) the importance of considering "motor experience" in assessing the effect of any postspinalization intervention; and 3) the utilization of use-dependent interventions in facilitating and enhancing motor recovery.
Collapse
Affiliation(s)
- R D de Leon
- Department of Physiological Science, UCLA, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
24
|
Edgerton VR, Roy RR, De Leon Niranjala Tillakaratne R, Hodgson JA. Does Motor Learning Occur in the Spinal Cord? Neuroscientist 1997. [DOI: 10.1177/107385849700300510] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is becoming clear that the plasticity of the sensory-motor networks of the adult mammalian lumbosacral spinal cord is much greater than and is more dependent on the specific patterns of use than has been previously assumed. Using a wide variety of experimental paradigms in which the lumbar spinal cord is isolated from the brain, it has been shown that the lumbosacral spinal cord can learn to execute stepping or standing more successfully if that specific task is practiced. It also appears that the sensory input associated with the motor task and/or the manner in which it is interpreted by the spinal cord are important components of the neural network plasticity. Early evidence suggests that several neurotransmitter systems in the spinal cord, to include glycinergic and GABAergic systems, adapt to repetitive use. These studies extend a growing body of evidence suggesting that memory and learning are widely distributed phenomena within the central nervous system. NEUROSCIENTIST 3:287–294, 1997
Collapse
Affiliation(s)
- V. Reggie Edgerton
- Department of Physiological Science (VRE, RdL, NT, JAH), and Brain Research Institute (VRE, RRR, JAH), University of California, Los Angeles, California
| | - Roland R. Roy
- Department of Physiological Science (VRE, RdL, NT, JAH), and Brain Research Institute (VRE, RRR, JAH), University of California, Los Angeles, California
| | - Ray De Leon Niranjala Tillakaratne
- Department of Physiological Science (VRE, RdL, NT, JAH), and Brain Research Institute (VRE, RRR, JAH), University of California, Los Angeles, California
| | - John A. Hodgson
- Department of Physiological Science (VRE, RdL, NT, JAH), and Brain Research Institute (VRE, RRR, JAH), University of California, Los Angeles, California
| |
Collapse
|
25
|
Harkema SJ, Hurley SL, Patel UK, Requejo PS, Dobkin BH, Edgerton VR. Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol 1997; 77:797-811. [PMID: 9065851 DOI: 10.1152/jn.1997.77.2.797] [Citation(s) in RCA: 411] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Studies suggest that the human lumbosacral spinal cord can generate steplike oscillating electromyographic (EMG) patterns, but it remains unclear to what degree these efferent patterns depend on the phasic peripheral sensory information associated with bilateral limb movements and loading. We examined the role of sensory information related to lower-extremity weight bearing in modulating the efferent motor patterns of spinal-cord-injured (SCI) subjects during manually assisted stepping on a treadmill. Four nonambulatory subjects, each with a chronic thoracic spinal cord injury, and two nondisabled subjects were studied. The level of loading, EMG patterns, and kinematics of the lower limbs were studied during manually assisted or unassisted stepping on a treadmill with body weight support. The relationships among lumbosacral motor pool activity [soleus (SOL), medial gastrocnemius (MG), and tibialis anterior (TA)], limb load, muscle-tendon length, and velocity of muscle-tendon length change were examined. The EMG mean amplitude of the SOL, MG, and TA was directly related to the peak load per step on the lower limb during locomotion. The effects on the EMG amplitude were qualitatively similar in subjects with normal, partial, or no detectable supraspinal input. Responses were most consistent in the SOL and MG at load levels of < 50% of a subject's body weight. The modulation of the EMG amplitude from the SOL and MG, both across steps and within a step, was more closely associated with limb peak load than muscle-tendon stretch or the velocity of muscle-tendon stretch. Thus stretch reflexes were not the sole source of the phasic EMG activity in flexors and extensors during manually assisted stepping in SCI subjects. The EMG amplitude within a step was highly dependent on the phase of the step cycle regardless of level of load. These data suggest that level of loading on the lower limbs provides cues that enable the human lumbosacral spinal cord to modulate efferent output in a manner that may facilitate the generation of stepping. These data provide a rationale for gait rehabilitation strategies that utilize the level of load-bearing stepping to enhance the locomotor capability of SCI subjects.
Collapse
Affiliation(s)
- S J Harkema
- Department of Neurology, University of California, Los Angeles 90095, USA
| | | | | | | | | | | |
Collapse
|
26
|
de Leon R, Hodgson JA, Roy RR, Edgerton VR. Extensor- and flexor-like modulation within motor pools of the rat hindlimb during treadmill locomotion and swimming. Brain Res 1994; 654:241-50. [PMID: 7987674 DOI: 10.1016/0006-8993(94)90485-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
EMG activity was recorded from the vastus lateralis (VL, knee extensor), rectus femoris (RF, hip flexor and knee extensor), tibialis anterior (TA, ankle flexor and digit extensor) and either the lateral or medial gastrocnemius (LG, MG, knee flexors and ankle extensors) muscles of 7 adult rats during treadmill locomotion and swimming. Most flexors and extensors are activated as a single burst but each is known to be modulated differently during locomotion. For example, the extensor EMG bursts are shortened and amplitude elevated as speed increases, whereas little change occurs in the EMG duration and amplitude in flexors. The RF and VL displayed a double burst of EMG activity per cycle during treadmill locomotion and a single burst during swimming. Kinematic and EMG analyses showed that during running, one of these EMG bursts occurred primarily during swing while the other burst occurred primarily during stance. Modulation of the burst occurring during swing approximated a flexor pattern, while the second burst was modulated like a typical extensor when running over a range of speeds and grades on a treadmill. These data suggest that motoneurons within a motor pool of a uniarticular (VL) as well as a biarticular (RF) muscle can be modulated by more than one cyclical input, probably of central origin, and that under some conditions several motor pools may share the same central commands.
Collapse
Affiliation(s)
- R de Leon
- Brain Research Institute, University of California, Los Angeles 90024-1761
| | | | | | | |
Collapse
|
27
|
Edgerton VR, Roy RR, Hodgson JA, Prober RJ, de Guzman CP, de Leon R. A physiological basis for the development of rehabilitative strategies for spinally injured patients. THE JOURNAL OF THE AMERICAN PARAPLEGIA SOCIETY 1991; 14:150-7. [PMID: 1683668 DOI: 10.1080/01952307.1991.11735848] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
After a decade of studies using animal models, there is sufficient information to encourage a reassessment of the potential for recovery of motor function following spinal cord injury in humans. This review focuses on the response of the lumbosacral motor system following spinal cord injury and the effects of rehabilitative strategies such as weight support, loading, and administration of specific pharmacological agonists and antagonists on the maintenance and/or recovery of motor function. Based on clinical experience and review of related studies, the authors suggest a list of eight strategies for the improvement of rehabilitative protocols.
Collapse
Affiliation(s)
- V R Edgerton
- Department of Kinesiology, University of California, Los Angeles 90024-1527
| | | | | | | | | | | |
Collapse
|