1
|
Aiba I, Noebels JL. Adrenergic agonist induces rhythmic firing in quiescent cardiac preganglionic neurons in nucleus ambiguous via activation of intrinsic membrane excitability. J Neurophysiol 2019; 121:1266-1278. [PMID: 30699052 PMCID: PMC6485744 DOI: 10.1152/jn.00761.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cholinergic vagal nerves projecting from neurons in the brain stem nucleus ambiguus (NAm) play a predominant role in cardiac parasympathetic pacemaking control. Central adrenergic signaling modulates the tone of this vagal output; however, the exact excitability mechanisms are not fully understood. We investigated responses of NAm neurons to adrenergic agonists using in vitro mouse brain stem slices. Preganglionic NAm neurons were identified by ChAT-tdTomato fluorescence in young adult transgenic mice, and their cardiac projection was confirmed by retrograde dye tracing. Juxtacellular recordings detected sparse or absent spontaneous action potentials (AP) in NAm neurons. However, bath application of epinephrine or norepinephrine strongly and reversibly activated most NAm neurons regardless of their basal firing rate. Epinephrine was more potent than norepinephrine, and this activation largely depends on α1-adrenoceptors. Interestingly, adrenergic activation of NAm neurons does not require an ionotropic synaptic mechanism, because postsynaptic excitatory or inhibitory receptor blockade did not occlude the excitatory effect, and bath-applied adrenergic agonists did not alter excitatory or inhibitory synaptic transmission. Instead, adrenergic agonists significantly elevated intrinsic membrane excitability to facilitate generation of recurrent action potentials. T-type calcium current and hyperpolarization-activated current are involved in this excitation pattern, although not required for spontaneous AP induction by epinephrine. In contrast, pharmacological blockade of persistent sodium current significantly inhibited the adrenergic effects. Our results demonstrate that central adrenergic signaling enhances the intrinsic excitability of NAm neurons and that persistent sodium current is required for this effect. This central balancing mechanism may counteract excessive peripheral cardiac excitation during increased sympathetic tone. NEW & NOTEWORTHY Cardiac preganglionic cholinergic neurons in the nucleus ambiguus (NAm) are responsible for slowing cardiac pacemaking. This study identified that adrenergic agonists can induce rhythmic action potentials in otherwise quiescent cholinergic NAm preganglionic neurons in brain stem slice preparation. The modulatory influence of adrenaline on central parasympathetic outflow may contribute to both physiological and deleterious cardiovascular regulation.
Collapse
Affiliation(s)
- Isamu Aiba
- Department of Neurology, Baylor College of Medicine , Houston, Texas
| | - Jeffrey L Noebels
- Department of Neurology, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
2
|
Hou L, Zhang M, Zhang X, Liu Z, Zhang P, Qiu D, Zhu L, Zhou X. Inspiratory-Activated Airway Vagal Preganglionic Neurones Excited by Thyrotropin-Releasing Hormone via Multiple Mechanisms in Neonatal Rats. Front Physiol 2018; 9:881. [PMID: 30065655 PMCID: PMC6056682 DOI: 10.3389/fphys.2018.00881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/19/2018] [Indexed: 11/13/2022] Open
Abstract
The airway vagal preganglionic neurons (AVPNs) providing projections to intrinsic tracheobronchial ganglia are considered to be crucial to modulation of airway resistance in physiological and pathological states. AVPNs classified into inspiratory-activated AVPNs (IA-AVPNs) and inspiratory-inhibited AVPNs (II-AVPNs) are regulated by thyrotropin-releasing hormone (TRH)-containing terminals. TRH causes a direct excitatory current and attenuates the phasic inspiratory glycinergic inputs in II-AVPNs, however, whether and how TRH influences IA-AVPNs remains unknown. In current study, TRH regulation of IA-AVPNs and its mechanisms involved were investigated. Using retrogradely fluorescent labeling method and electrophysiology techniques to identify IA-AVPNs in brainstem slices with rhythmic inspiratory hypoglossal bursts recorded by a suction electrode, the modulation of TRH was observed with patch-clamp technique. The findings demonstrate that under voltage clamp configuration, TRH (100 nM) caused a slow excitatory inward current, augmented the excitatory synaptic inputs, progressively suppressed the inhibitory synaptic inputs and elicited a distinctive electrical oscillatory pattern (OP). Such a current and an OP was independent of presynaptic inputs. Carbenoxolone (100 μM), a widely used gap junction inhibitor, fully suppressed the OP with persistence of TRH-induced excitatory slow inward current and augment of the excitatory synaptic inputs. Both tetrodotoxin (1 μM) and riluzole (20 μM) functioned to block the majority of the slow excitatory inward current and prevent the OP, respectively. Under current clamp recording, TRH caused a slowly developing depolarization and continuously progressive oscillatory firing pattern sensitive to TTX. TRH increased the firing frequency in response to injection of a square-wave current. The results suggest that TRH excited IA-AVPNs via the following multiple mechanisms: (1) TRH enhances the excitatory and depresses the inhibitory inputs; (2) TRH induces an excitatory postsynaptic slow inward current; (3) TRH evokes a distinctive OP mediated by gap junction.
Collapse
Affiliation(s)
- Lili Hou
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xingyi Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenwei Liu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pengyu Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dongying Qiu
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Gerontology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Zhu
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Sah N, Rajput S, Singh J, Meena C, Jain R, Sikdar S, Sharma S. l-pGlu-(2-propyl)-l-His-l-ProNH2 attenuates 4-aminopyridine-induced epileptiform activity and sodium current: a possible action of new thyrotropin-releasing hormone analog for its anticonvulsant potential. Neuroscience 2011; 199:74-85. [DOI: 10.1016/j.neuroscience.2011.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/30/2011] [Accepted: 10/04/2011] [Indexed: 12/11/2022]
|
4
|
Potent hyperglycemic and hyperinsulinemic effects of thyrotropin-releasing hormone microinjected into the rostroventrolateral medulla and abnormal responses in type 2 diabetic rats. Neuroscience 2010; 169:706-19. [PMID: 20457219 DOI: 10.1016/j.neuroscience.2010.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 04/28/2010] [Accepted: 05/03/2010] [Indexed: 02/07/2023]
Abstract
We identified ventrolateral medullary nuclei in which thyrotropin-releasing hormone (TRH) regulates glucose metabolism by modulating autonomic activity. Immunolabeling revealed dense prepro-TRH-containing fibers innervating the rostroventrolateral medulla (RVLM) and nucleus ambiguus (Amb), which contain, respectively, pre-sympathetic motor neurons and vagal motor neurons. In anesthetized Wistar rats, microinjection of the stable TRH analog RX77368 (38-150 pmol) into the RVLM dose-dependently and site-specifically induced hyperglycemia and hyperinsulinemia. At 150 pmol, blood glucose reached a peak of 180+/-18 mg% and insulin increased 4-fold. The strongest hyperglycemic effect was induced when RX77368 was microinjected into C1 area containing adrenalin cells. Spinal cord transection at cervical-7 abolished the hyperglycemia induced by RVLM RX77368, but not the hyperinsulinemic effect. Bilateral vagotomy prevented the rise in insulin, resulting in a prolonged hyperglycemic response. The hyperglycemic and hyperinsulinemic effects of the TRH analog in the RVLM was peptide specific, since angiotensin II or a substance P analog at the same dose had weak or no effects. Microinjection of RX77368 into the Amb stimulated insulin secretion without influencing glucose levels. In conscious type 2 diabetic Goto-Kakizaki (GK) rats, intracisternal injection of RX77368 induced a remarkably amplified hyperglycemic effect with suppressed insulin response compared to Wistar rats. RX77368 microinjected into the RVLM of anesthetized GK rats induced a significantly potentiated hyperglycemic response and an impaired insulin response, compared to Wistar rats. These results indicate that the RVLM is a site at which TRH induces sympathetically-mediated hyperglycemia and vagally-mediated hyperinsulinemia, whereas the Amb is mainly a vagal activating site for TRH. Hyperinsulinemia induced by TRH in the RVLM is not secondary to the hyperglycemic response. The potentiated hyperglycemic and suppressed hyperinsulinemic responses in diabetic GK rats indicate that an unbalanced "sympathetic-over-vagal" activation by TRH in brainstem RVLM contributes to the pathophysiology of impaired glucose homeostasis in type 2 diabetes.
Collapse
|
5
|
Sun QJ, Berkowitz RG, Pilowsky PM. GABAA mediated inhibition and post-inspiratory pattern of laryngeal constrictor motoneurons in rat. Respir Physiol Neurobiol 2008; 162:41-7. [DOI: 10.1016/j.resp.2008.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 03/26/2008] [Accepted: 03/26/2008] [Indexed: 11/28/2022]
|
6
|
Inyushkin AN. Thyroliberin blocks the potassium A-current in neurons in the respiratory center of adult rats in vitro. ACTA ACUST UNITED AC 2005; 35:549-54. [PMID: 16033204 DOI: 10.1007/s11055-005-0091-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Thyroliberin is a neuropeptide with marked respiratory activity. The neuronal mechanisms underlying this activity were addressed in experiments on transverse slices of brainstem from adult rats in conditions of membrane potential clamping to study effect effects of thyroliberin (10 nM) on the potassium A-current in neurons of two areas of the respiratory center--the ventrolateral areas of the solitary tract nucleus and the pre-Betzinger complex. The A-current, seen in all study neurons in the respiratory center, was partially and reversibly blocked by thyroliberin. A significant reduction in the amplitude of the current was accompanied by an increase in the inactivation constant. The effect of thyroliberin on the amplitude of the A-current was analogous to that of 5 mM 4-aminopyridine. These results show that the stimulatory effects of thyroliberin at the level of respiratory center neurons is at least partly explained by its ability to block the potassium A-current.
Collapse
Affiliation(s)
- A N Inyushkin
- Samara State University, 1 Academician Pavlov Street, 443011 Samara, Russia
| |
Collapse
|
7
|
Haji A, Takeda R, Okazaki M. Neuropharmacology of control of respiratory rhythm and pattern in mature mammals. Pharmacol Ther 2000; 86:277-304. [PMID: 10882812 DOI: 10.1016/s0163-7258(00)00059-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes the current understanding of the neurotransmitters and neuromodulators that are involved, firstly, in respiratory rhythm and pattern generation, where glutamate plays an essential role in the excitatory mechanisms and glycine and gamma-aminobutyric acid mediate inhibitory postsynaptic effects, and secondly, in the transmission of input signals from the central and peripheral chemoreceptors and of motor outputs to respiratory motor neurons. Finally, neuronal mechanisms underlying respiratory modulations caused by respiratory depressants and excitants, such as general anesthetics, benzodiazepines, opioids, and cholinergic agents, are described.
Collapse
Affiliation(s)
- A Haji
- Department of Pharmacology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, 930-0194, Toyama, Japan
| | | | | |
Collapse
|
8
|
Ballanyi K, Onimaru H, Homma I. Respiratory network function in the isolated brainstem-spinal cord of newborn rats. Prog Neurobiol 1999; 59:583-634. [PMID: 10845755 DOI: 10.1016/s0301-0082(99)00009-x] [Citation(s) in RCA: 271] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The in vitro brainstem-spinal cord preparation of newborn rats is an established model for the analysis of respiratory network functions. Respiratory activity is generated by interneurons, bilaterally distributed in the ventrolateral medulla. In particular non-NMDA type glutamate receptors constitute excitatory synaptic connectivity between respiratory neurons. Respiratory activity is modulated by a diversity of neuroactive substances such as serotonin, adenosine or norepinephrine. Cl(-)-mediated IPSPs provide a characteristic pattern of membrane potential fluctuations and elevation of the interstitial concentration of (endogenous) GABA or glycine leads to hyperpolarisation-related suppression of respiratory activity. Respiratory rhythm is not blocked upon inhibition of IPSPs with bicuculline, strychnine and saclofen. This indicates that GABA- and glycine-mediated mutual synaptic inhibition is not crucial for in vitro respiratory activity. The primary oscillatory activity is generated by neurons of a respiratory rhythm generator. In these cells, a set of intrinsic conductances such as P-type Ca2+ channels, persistent Na+ channels and G(i/o) protein-coupled K+ conductances mediates conditional bursting. The respiratory rhythm generator shapes the activity of an inspiratory pattern generator that provides the motor output recorded from cranial and spinal nerve rootlets in the preparation. Burst activity appears to be maintained by an excitatory drive due to tonic synaptic activity in concert with chemostimulation by H+. Evoked anoxia leads to a sustained decrease of respiratory frequency, related to K+ channel-mediated hyperpolarisation, whereas opiates or prostaglandins cause longlasting apnea due to a fall of cellular cAMP. The latter observations show that this in vitro model is also suited for analysis of clinically relevant disturbances of respiratory network function.
Collapse
Affiliation(s)
- K Ballanyi
- II Physiologisches Institut, Universität Göttingen, Germany
| | | | | |
Collapse
|
9
|
Inyushkin AN, Merkulova NA, Chepurnov SA. The pre-Bötzinger complex participates in generating the respiratory effects of thyroliberin. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1999; 29:321-6. [PMID: 10493545 DOI: 10.1007/bf02465344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Experiments on anesthetized rats were performed to study the effects of microinjection of thyroliberin (10 fM-100 microM) into the area of the pre-Bötzinger complex on respiratory and circulatory parameters. Thyroliberin dose-dependently increased respiration frequency, with shortening of inspiration and expiration. Tidal volume and the amplitude of the integrated EMG recorded from the inspiratory muscles decreased after administration of concentrated solutions. Using this dosage method, thyroliberin had weak effects on systemic hemodynamics. The data suggest that structures located in the area of the pre-Bötzinger complex take part in generating the respiratory effects of thyroliberin.
Collapse
Affiliation(s)
- A N Inyushkin
- Department of Human and Animal Physiology, The State University, Samara, Russia
| | | | | |
Collapse
|
10
|
Koenig ML, Yourick DL, Meyerhoff JL. Thyrotropin-releasing hormone (TRH) attenuates glutamate-stimulated increases in calcium in primary neuronal cultures. Brain Res 1996; 730:143-9. [PMID: 8883898 DOI: 10.1016/0006-8993(96)00433-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Thyrotropin-releasing hormone (TRH) has been found to be widely distributed in the mammalian central nervous system. Further, the concentration of the tripeptide increases following seizure activity, and TRH is known to have anticonvulsant effects. We have investigated the possibility that the anticonvulsant activity of TRH may be due, at least in part, to an attenuation of the glutamate-stimulated increases in intraneuronal Ca2+ ([Ca]i) that occur with epileptic activity. We find that the tripeptide does not itself excite neurons and that it is able to significantly reduce glutamate-stimulated increases in [Ca]i in cultured neurons derived from fetal rat forebrain. Increases in the concentration of TRH following seizure activity may represent an endogenous homeostatic mechanism for reducing glutamate-induced elevations in intraneuronal Ca2+.
Collapse
Affiliation(s)
- M L Koenig
- Division of Neurosciences, Walter Reed Army Institute of Research, Washington, DC 20307-5100, USA
| | | | | |
Collapse
|
11
|
Sun QJ, Llewellyn-Smith I, Minson J, Arnolda L, Chalmers J, Pilowsky P. Thyrotropin-releasing hormone immunoreactive boutons form close appositions with medullary expiratory neurons in the rat. Brain Res 1996; 715:136-44. [PMID: 8739632 DOI: 10.1016/0006-8993(95)01569-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The aim of the present study was to assess the size of the input from TRH immunoreactive varicosities to medullary respiratory neurons in the Bötzinger complex and caudal ventral respiratory group. Neurobiotin was intracellularly injected into seven neurons in the Bötzinger complex, between 0.4 and 0.9 mm caudal to the facial nucleus. Five of the seven Bötzinger neurons had extensive local axonal projections, with bouton-like varicosities clustered predominantly between their somata and the nucleus ambiguus. Seven neurons in the caudal ventral respiratory group, located between 1.6 and 2.4 mm caudal to the facial nucleus, were also labelled. All but one caudal respiratory neurons had no, or very few, medullary collaterals. TRH immunoreactive fibres were seen in many medullary nuclei, including the ventral reticular formation. Bötzinger neurons were closely apposed by an average of 29 +/- 8 TRH immunoreactive boutons/neuron (mean +/- S.D., n = 7). In contrast, caudal ventral respiratory group neurons were apposed by only 5 +/- 3 TRH immunoreactive boutons/neuron (n = 7). Bötzinger neurons form many intramedullary and bulbospinal inhibitory connections with premotoneurons and motoneurons that are important in the timing, amplitude and shape, of respiratory activity. Our findings suggest a role for endogenous TRH-containing neurons in modulating the activity of inhibitory Bötzinger neurons and neurons in the caudal ventral respiratory group. The significance of the apparent difference in size of this input remains to be determined.
Collapse
Affiliation(s)
- Q J Sun
- Department of Medicine, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| | | | | | | | | | | |
Collapse
|
12
|
Sun QJ, Pilowsky P, Llewellyn-Smith IJ. Thyrotropin-releasing hormone inputs are preferentially directed towards respiratory motoneurons in rat nucleus ambiguus. J Comp Neurol 1995; 362:320-30. [PMID: 8576442 DOI: 10.1002/cne.903620303] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the present study, we assessed the extent of the thyrotropin-releasing hormone (TRH) input to motoneurons in the ambigual, facial, and hypoglossal nuclei of the rat using a combination of intracellular recording, dye filling, and immunohistochemistry. Twelve motoneurons in the rostral nucleus ambiguus were labelled by intracellular injection in vivo of Neurobiotin (Vector). Seven out of 12 ambigual motoneurons displayed rhythmic fluctuations of their membrane potential in phase with phrenic nerve discharge, whereas the other five had no modulations of any kind. Seven facial motoneurons and seven hypoglossal motoneurons were also filled with Neurobiotin. All three motor nuclei contained TRH-immunoreactive varicosities, with the largest numbers found in the nucleus ambiguus. Close appositions were seen between TRH-immunoreactive boutons and every labelled motoneuron. Respiratory-related motoneurons in the nucleus ambiguus received the largest number of TRH appositions with 74 +/- 38 appositions/neuron (mean +/- S.D.; n = 7). In contrast, nonrespiratory ambigual motoneurons received significantly fewer TRH appositions (11 +/- 5; n = 5; P < 0.05; Mann-Whitney U test). Facial motoneurons received about the same number of TRH appositions as nonrespiratory ambigual motoneurons, with 13 +/- 4 (n = 7). Hypoglossal motoneurons received the fewest appositions from TRH-containing boutons, with 8 +/- 2 (n = 7). There were no differences in the TRH inputs to respiratory and nonrespiratory motoneurons in the facial and hypoglossal nuclei. These results demonstrate that, among motoneurons in the medulla, respiratory motoneurons in the rostral nucleus ambiguus are preferentially innervated by the TRH-immunoreactive boutons.
Collapse
Affiliation(s)
- Q J Sun
- Department of Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | | | | |
Collapse
|