Psarra TA, Batzias GC, Peeters TL, Koutsoviti-Papadopoulou M. The gastrointestinal effects that may follow the administration of theophylline reflect the pharmacodynamic profiles of both the parent drug and its metabolites.
Fundam Clin Pharmacol 2009;
24:171-80. [PMID:
19788565 DOI:
10.1111/j.1472-8206.2009.00758.x]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study investigates the effect of theophylline along the rabbit gastrointestinal tract in comparison with the pharmacodynamic effect produced by the combined application of its three major metabolites. At concentrations up to 10(-3) m, theophylline relaxed, in a declining order from the lower oesophageal sphincter (LOS) to pylorus, all regions of the upper gastrointestinal tract, but only the ascending colon from the intestinal regions studied. At concentrations higher than 10(-3) m, instead of relaxing, theophylline strongly contracted the antrum and pylorus. In all three small intestinal regions, at concentrations up to 10(-3) m, theophylline produced a weak contraction, which at higher concentrations became very strong, and at 10(-2) m was comparable to that produced by a supramaximal dose of acetylcholine. The additive relaxing effect resulting from the combined application of the theophylline's metabolites was, from oesophagus to pylorus, weaker than that produced by theophylline, while on the ascending colon it was comparable to that of the parent drug. In contrast, the additive contractile effect of the metabolites on the three small intestinal regions was four to five times higher the one produced by theophylline. In conclusion, this study shows that the additive effect of the combined application of theophylline's major metabolites on the rabbit gastrointestinal tract plays a major role in the final response of the intestine, and a minor one in the final responses of the gastric regions, while both the parent drug and the metabolites contribute to the final responses of the oesophagus and LOS.
Collapse