1
|
Diacetyl and related flavorant α-Diketones: Biotransformation, cellular interactions, and respiratory-tract toxicity. Toxicology 2017; 388:21-29. [PMID: 28179188 DOI: 10.1016/j.tox.2017.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/26/2023]
Abstract
Exposure to diacetyl and related α-diketones causes respiratory-tract damage in humans and experimental animals. Chemical toxicity is often associated with covalent modification of cellular nucleophiles by electrophilic chemicals. Electrophilic α-diketones may covalently modify nucleophilic arginine residues in critical proteins and, thereby, produce the observed respiratory-tract pathology. The major pathway for the biotransformation of α-diketones is reduction to α-hydroxyketones (acyloins), which is catalyzed by NAD(P)H-dependent enzymes of the short-chain dehydrogenase/reductase (SDR) and the aldo-keto reductase (AKR) superfamilies. Reduction of α-diketones to the less electrophilic acyloins is a detoxication pathway for α-diketones. The pyruvate dehydrogenase complex may play a significant role in the biotransformation of diacetyl to CO2. The interaction of toxic electrophilic chemicals with cellular nucleophiles can be predicted by the hard and soft, acids and bases (HSAB) principle. Application of the HSAB principle to the interactions of electrophilic α-diketones with cellular nucleophiles shows that α-diketones react preferentially with arginine residues. Furthermore, the respiratory-tract toxicity and the quantum-chemical reactivity parameters of diacetyl and replacement flavorant α-diketones are similar. Hence, the identified replacement flavorant α-diketones may pose a risk of flavorant-induced respiratory-tract toxicity. The calculated indices for the reaction of α-diketones with arginine support the hypothesis that modification of protein-bound arginine residues is a critical event in α-diketone-induced respiratory-tract toxicity.
Collapse
|
2
|
Torres ME, dos Santos APM, Gonçalves LL, Andrade V, Batoréu MC, Mateus ML. Role of N-acetylcysteine in protecting against 2,5-hexanedione neurotoxicity in a rat model: changes in urinary pyrroles levels and motor activity performance. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:807-813. [PMID: 25305742 DOI: 10.1016/j.etap.2014.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 09/17/2014] [Accepted: 09/21/2014] [Indexed: 06/04/2023]
Abstract
The interference of N-acetylcysteine (NAC) on 2,5-hexanedione (2,5-HD) neurotoxicity was evaluated through behavioral assays and the analysis of urinary 2,5-HD, dimethylpyrrole norleucine (DMPN), and cysteine-pyrrole conjugate (DMPN NAC), by ESI-LC-MS/MS, in rats exposed to 2,5-HD and co-exposed to 2,5-HD and NAC. Wistar rats were treated with 4 doses of: 400mg 2,5-HD/kg bw (group I), 400mg 2,5-HD/kg bw+200mg NAC/kg bw (group II), 200mg NAC/kg bw (group III) and with saline (group IV). The results show a significant decrease (p<0.01) in urinary DMPN and free 2,5-HD, a significant increase (p<0.01) in DMPN NAC excretion, and a significant recovery (p<0.01) on motor activity in rats co-exposed to 2,5-HD+NAC, as compared with rats exposed to 2,5-HD alone. Taken together, our findings suggest that at the studied conditions NAC protects against 2,5-HD neurotoxicity and DMPN may be proposed as a new sensitive and specific biomarker of 2,5-HD neurotoxicity in animals treated with a toxic amount of 2,5-hexanedione.
Collapse
Affiliation(s)
- M Edite Torres
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; CiiEM, Center for Interdisciplinary Research Egas Moniz, ISCSEM, Institute of Health and Life Sciences Egas Moniz, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal
| | - A P Marreilha dos Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Luísa L Gonçalves
- CiiEM, Center for Interdisciplinary Research Egas Moniz, ISCSEM, Institute of Health and Life Sciences Egas Moniz, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal
| | - Vanda Andrade
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - M Camila Batoréu
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - M Luísa Mateus
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
3
|
LoPachin RM, Gavin T. Toxic neuropathies: Mechanistic insights based on a chemical perspective. Neurosci Lett 2014; 596:78-83. [PMID: 25218479 DOI: 10.1016/j.neulet.2014.08.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/31/2014] [Indexed: 02/01/2023]
Abstract
2,5-Hexanedione (HD) and acrylamide (ACR) are considered to be prototypical among chemical toxicants that cause central-peripheral axonopathies characterized by distal axon swelling and degeneration. Because the demise of distal regions was assumed to be causally related to the onset of neurotoxicity, substantial effort was devoted to deciphering the respective mechanisms. Continued research, however, revealed that expression of the presumed hallmark morphological features was dependent upon the daily rate of toxicant exposure. Indeed, many studies reported that the corresponding axonopathic changes were late developing effects that occurred independent of behavioral and/or functional neurotoxicity. This suggested that the toxic axonopathy classification might be based on epiphenomena related to dose-rate. Therefore, the goal of this mini-review is to discuss how quantitative morphometric analyses and the establishment of dose-dependent relationships helped distinguish primary, mechanistically relevant toxicant effects from non-specific consequences. Perhaps more importantly, we will discuss how knowledge of neurotoxicant chemical nature can guide molecular-level research toward a better, more rational understanding of mechanism. Our discussion will focus on HD, the neurotoxic γ-diketone metabolite of the industrial solvents n-hexane and methyl-n-butyl ketone. Early investigations suggested that HD caused giant neurofilamentous axonal swellings and eventual degeneration in CNS and PNS. However, as our review will point out, this interpretation underwent several iterations as the understanding of γ-diketone chemistry improved and more quantitative experimental approaches were implemented. The chemical concepts and design strategies discussed in this mini-review are broadly applicable to the mechanistic studies of other chemicals (e.g., n-propyl bromine, methyl methacrylate) that cause toxic neuropathies.
Collapse
Affiliation(s)
- Richard M LoPachin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, United States.
| | - Terrence Gavin
- Department of Chemistry, Iona College, 402 North Avenue, New Rochelle, NY 10804, United States
| |
Collapse
|
4
|
Alternative biomarkers of n-hexane exposure: Characterization of aminoderived pyrroles and thiol-pyrrole conjugates in urine of rats exposed to 2,5-hexanedione. Toxicol Lett 2014. [DOI: 10.1016/j.toxlet.2013.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Zhang L, Gavin T, DeCaprio AP, LoPachin RM. Gamma-diketone axonopathy: analyses of cytoskeletal motors and highways in CNS myelinated axons. Toxicol Sci 2010; 117:180-9. [PMID: 20554699 DOI: 10.1093/toxsci/kfq176] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
2,5-Hexanedione (HD) intoxication is associated with axon atrophy that might be responsible for the characteristic gait abnormalities, hindlimb skeletal muscle weakness and other neurological deficits that accompany neurotoxicity. Although previous mechanistic research focused on neurofilament triplet proteins (NFL, NFM, NFH), other cytoskeletal targets are possible. Therefore, to identify potential non-NF protein targets, we characterized the effects of HD on protein-protein interactions in cosedimentation assays using microtubules and NFs prepared from spinal cord of rats intoxicated at different daily dose rates (175 and 400 mg/kg/day). Results indicate that HD did not alter the presence of alpha- or beta-tubulins in these preparations, nor were changes noted in the distribution of either anterograde (KIF1A, KIF3, KIF5) or retrograde (dynein) molecular motors. The cosedimentation of dynactin, a dynein-associated protein, also was not affected. Immunoblot analysis of microtubule-associated proteins (MAPs) in microtubule preparations revealed substantial reductions (45-80%) in MAP1A, MAP1B heavy chain, MAP2, and tau regardless of HD dose rate. MAP1B light chain content was not altered. Finally, HD intoxication did not influence native NF protein content in either preparation. As per previous research, microtubule and NF preparations were enriched in high-molecular weight NF species. However, these NF derivatives were common to both HD and control samples, suggesting a lack of pathognomonic relevance. These data indicate that, although motor proteins were not affected, HD selectively impaired MAP-microtubule binding, presumably through adduction of lysine residues that mediate such interactions. Given their critical role in cytoskeletal physiology, MAPs could represent a relevant target for the induction of gamma-diketone axonopathy.
Collapse
Affiliation(s)
- Lihai Zhang
- Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York 10467-2490, USA
| | | | | | | |
Collapse
|
6
|
DeCaprio AP, Kinney EA, LoPachin RM. Comparative covalent protein binding of 2,5-hexanedione and 3-acetyl-2,5-hexanedione in the rat. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:861-869. [PMID: 19557614 DOI: 10.1080/15287390902959508] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
2,5-Hexanedione (HD) is the metabolite implicated in n-hexane neurotoxicity. This gamma-diketone reacts with protein lysine amines to form 2,5-dimethylpyrrole adducts. Pyrrole adduction of neurofilaments (NF) and/or other axonal proteins was proposed as a critical step in the neuropathy. While pyrrole adduction is widely accepted as necessary, subsequent pyrrole oxidation, which may result in protein cross-linking, was alternatively postulated as the critical mechanistic step. Previous studies have indicated that 3-acetyl-2,5-HD (AcHD), an analogue that forms pyrroles that do not oxidize, was not neurotoxic in rats. However, relative levels of pyrrole adduction of NF or other axonal proteins were not reported. In the present study, groups of 6 male Wistar rats were given saline, [1,6-(14)C]-HD (3 mmol/kg/d), or [5-(14)C]-AcHD (0.1 mmol/kg/d), i.p. for 21 d. HD- and AcHD-treated rats lost 10% and gained 14% body weight, respectively, compared to a 22% gain for control rats. At termination, HD- and AcHD-treated rats exhibited mean scores of 3.5 and 1.4, respectively, for hindlimb weakness (0-5 scale). Incorporation of radiolabel from HD was 27.8 +/- 3.9, 13.9 +/- 2.6, and 7.8 +/- 0.6 nmol/mg in plasma protein, purified globin, and axonal cytoskeletal proteins, respectively, compared to 0.6 +/- 0.1, 1.6 +/- 0.5, and 1.0 +/- 0.1 for AcHD. Binding of HD to the NF-L, -M, and -H subunit proteins from treated animals was 4-, 24-, and 13-fold higher, respectively, that that of AcHD, indicating differing stoichiometry and patterns of NF adduction for the two diketones. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of globin and NF proteins did not demonstrate protein cross-linking for either diketone at the dose levels and time period examined. These results indicate that that the lack of neurotoxicity previously reported for AcHD may reflect differences in adduct levels at critical axonal target sites rather than an inability to form cross-linking adducts. Based on these data, further studies are required to fully assess the neurotoxic potency of AcHD and other non-cross-linking analogues as compared to HD.
Collapse
Affiliation(s)
- Anthony P DeCaprio
- Environmental Health Sciences Division, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA.
| | | | | |
Collapse
|
7
|
Pei W, Misumi J, Kubota N, Morikawa M, Kimura N. Two new reactive targets of 2,5-hexanedione in vitro – beta-alanine and glycine. Amino Acids 2006; 32:261-4. [PMID: 16733615 DOI: 10.1007/s00726-006-0344-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 02/25/2006] [Indexed: 11/27/2022]
Abstract
In this study, we found that two amino acids reacted with 2,5-hexanedione to form new reaction products in vitro, respectively. In the reaction of beta-alanine and 2,5-hexanedione, a reaction product was obtained and analyses of obtained results showed it was 3-(2,5-dimethyl-1H-pyrrol-1-yl)propanoic acid; in the reaction of glycine and 2,5-hexanedione, a reaction product was also obtained and analyses showed it was (2,5-dimethyl-1H-pyrrol-1-yl)acetic acid. Two reaction products were found to be oxidized easily; in addition, the latter was more easily to be oxidized than the former in the air. Our discoveries demonstrated that reactions between amino acids and 2,5-hexanedione could exist possibly in vitro. At present, it is clear that 2,5-hexanedione causes either axon atrophy or swelling, but the underlying molecular mechanism is still unclear. Since both beta-alanine and glycine are considered as neurotransmitter in the central nervous system, the reaction products remain to be identified in vivo.
Collapse
Affiliation(s)
- W Pei
- Department of Public Health and Hygiene, Faculty of Medicine, Oita University, Yufu City, Oita, Japan
| | | | | | | | | |
Collapse
|
8
|
Lopachin RM, Jortner BS, Reid ML, Monir A. Gamma-Diketone central neuropathy: quantitative analyses of cytoskeletal components in myelinated axons of the rat rubrospinal tract. Neurotoxicology 2005; 26:1021-30. [PMID: 15964632 DOI: 10.1016/j.neuro.2005.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
Loss of axon caliber is a primary component of gamma-diketone neuropathy [LoPachin RM, DeCaprio AP. gamma-Diketone central neuropathy: axon atrophy and the role of cytoskeletal protein adduction. Toxicol Appl Pharmacol 2004;199:20-34]. It is possible that this effect is mediated by changes in the density of cytoskeletal components and corresponding spatial relationships. To examine this possibility, morphometric methods were used to quantify the effects of 2,5-hexanedione (HD) intoxication on neurofilament-microtubule densities and nearest neighbor distances in myelinated rubrospinal axons. Rats were exposed to HD at one of two daily dose-rates (175 or 400 mg/kg per day, gavage) until a moderate level of neurotoxicity was achieved (99 or 21 days of intoxication, respectively) as determined by gait analysis and measurements of hindlimb grip strength. Results indicate that, regardless of dose-rate, HD intoxication did not cause changes in axonal neurofilament (NF) density, but did significantly increase microtubule (MT) density. No consistent alterations in interneurofilament or NF-MT distances were detected by ultrastructural morphometric analyses. These data suggest that the axon atrophy induced by HD was not mediated by major disruptions of stationary cytoskeletal organization. Recent biochemical studies of spinal cord from HD intoxicated rats showed that, although the NF protein content in the stationary cytoskeleton (polymer fraction) was not affected, the mobile subunit pool was depleted substantially [LoPachin RM, He D, Reid ML, Opanashuk LA. 2,5-Hexanedione-induced changes in the monomeric neurofilament protein content of rat spinal cord fractions. Toxicol Appl Pharmacol 2004;198:61-73]. The stability of the polymer fraction during HD intoxication is consistent with the absence of significant ultrastructural modifications noted in the present study. Together, these findings implicate loss of mobile NF proteins as the primary mechanism of axon atrophy.
Collapse
Affiliation(s)
- Richard M Lopachin
- Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, Moses Research Tower-7, 111 E. 2210th St., Bronx, NY 10467-2490, USA.
| | | | | | | |
Collapse
|
9
|
Lopachin RM, Decaprio AP. Protein Adduct Formation as a Molecular Mechanism in Neurotoxicity. Toxicol Sci 2005; 86:214-25. [PMID: 15901921 DOI: 10.1093/toxsci/kfi197] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Richard M Lopachin
- Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York 10467-2490, USA.
| | | |
Collapse
|
10
|
LoPachin RM, He D, Reid ML. 2,5-Hexanedione-induced changes in the neurofilament subunit pools of rat peripheral nerve. Neurotoxicology 2005; 26:229-40. [PMID: 15713344 DOI: 10.1016/j.neuro.2004.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 09/29/2004] [Indexed: 11/27/2022]
Abstract
Axon atrophy is the principle morphological feature of the peripheral neuropathy induced by 2,5-hexanedione (HD). Axon caliber is determined by a stationary neurofilamentous cytoskeleton that is maintained through dynamic interactions with mobile neurofilament (NF) subunits. To determine the effects of HD on the stationary and mobile NF pools, groups of rats were exposed to HD at dosing schedules (175 mg/kg x 101 days or 400 mg/kg x 26 days) that produced moderate levels of neurological deficits and, as assessed by previous studies, prevalent axon atrophy in peripheral nerve. Sciatic and tibial nerves from HD-intoxicated rats and their age-matched controls were triton-extracted and separated by differential centrifugation into a high-speed pellet (P1) of NF polymer and a corresponding supernatant fraction (S1), which presumably contained mobile monomer. Cytoskeletal proteins (NF-L, NF-M, NF-H and beta-tubulin) in each fraction were determined by immunoblot analysis. Results show that regardless of HD dose-rate, triton-soluble NF subunits in the supernatant fractions were significantly reduced, whereas triton-insoluble proteins in the corresponding pellets were inconsistently affected. Beta-tubulin also exhibited inconsistent fractional changes, while abnormal higher molecular weight NF proteins were detected primarily in the triton-insoluble fraction. Studies with antibodies directed against phosphorylated (RT97) and non-phosphorylated (SMI32) epitopes on NF-H did not reveal major changes in subunit phosphorylation. These results suggest that HD intoxication is primarily associated with depletion of soluble NF proteins, which could produce axon atrophy through disruption of cytoskeletal turnover and maintenance.
Collapse
Affiliation(s)
- Richard M LoPachin
- Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, Moses Research Tower-7, 111 E. 210th St., Bronx, NY 10467, USA.
| | | | | |
Collapse
|
11
|
Barber DS, LoPachin RM. Proteomic analysis of acrylamide-protein adduct formation in rat brain synaptosomes. Toxicol Appl Pharmacol 2004; 201:120-36. [PMID: 15541752 DOI: 10.1016/j.taap.2004.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Accepted: 05/19/2004] [Indexed: 10/26/2022]
Abstract
Evidence suggests that the neurological defects (gait abnormalities, foot splay, and skeletal muscle weakness) associated with acrylamide (ACR) intoxication are mediated by impaired neurotransmission at central and peripheral synapses. ACR can form adducts with nucleophilic residues on proteins and thereby alter corresponding structure and function. To evaluate protein adduction in nerve terminals as a possible mechanism of action, recombinant N-ethylmaleimide sensitive factor (NSF) was exposed in vitro to ACR (10 micromol) and mass spectrometry (MS) was used to identify adduct sites. MS analyses demonstrated that ACR formed adducts with sulfhydryl groups on cysteine residues (carbamoylethylcysteine, or CEC) of NSF. Ex vivo incubation of whole brain synaptosomes with ACR (0.001-1.0 M) produced concentration-dependent increases in CEC that were inversely correlated to reductions in neurotransmitter release that occurred over the same neurotoxicant concentration range. In synaptosomes isolated from rats intoxicated at a higher (50 mg/kg per day x 3, 5, 8, or 11 days) or a lower (21 mg/kg per day x 14, 21, or 28 day) ACR dose rate, CEC levels increased progressively up to a moderate level of neurotoxicity. To identify protein adducts, synaptosomal proteins labeled by ex vivo 14C-ACR exposure were separated by gel electrophoresis and probed by immunoblot analysis. Results showed that NSF and the SNARE protein, SNAP-25, were tentative ACR targets. Subsequent experiments indicated that ACR exposure increased synaptosomal levels of the 7S SNARE core complex, which is consistent with inhibition of NSF, SNAP-25 function, or both. These data suggest that adduction of cysteine residues on NSF and certain SNARE proteins might be causally involved in the nerve terminal dysfunction induced by ACR.
Collapse
Affiliation(s)
- David S Barber
- Center for Human and Environmental Toxicology, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
12
|
LoPachin RM, He D, Reid ML, Opanashuk LA. 2,5-Hexanedione-induced changes in the monomeric neurofilament protein content of rat spinal cord fractions. Toxicol Appl Pharmacol 2004; 198:61-73. [PMID: 15207649 DOI: 10.1016/j.taap.2004.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 03/01/2004] [Indexed: 11/20/2022]
Abstract
Quantitative morphometric analyses have demonstrated that axon atrophy is the primary neuropathic feature in the CNS and PNS of rats intoxicated with 2,5-hexanedione (HD). Axon caliber is maintained by the exchange of mobile neurofilament (NF) subunits with the stationary polymer and, therefore, HD might produce atrophy by disrupting cytoskeletal turnover. To evaluate this possibility, groups of rats were exposed to HD at dosing schedules (175 mg/kg x 101 days or 400 mg/kg x 26 days) that produced moderate levels of neurological deficits and prevalent axon atrophy in spinal cord white matter tracts. Lumbar spinal cord regions from HD-intoxicated rats and their age-matched controls were Triton-extracted and separated by differential fractionation into a low-speed, insoluble pellet (P1) of NF polymer and a high-speed supernatant fraction (S2), which presumably contained mobile monomer. Cytoskeletal protein contents (NF-L, -M, -H, and beta-tubulin) in each fraction were determined by immunoblot analysis. Results show that regardless of HD dose-rate, the NF polymer in P1 remained unaffected, although soluble monomer in the S2 fraction was depleted significantly (60-80% reduction). Fractional beta-tubulin contents were inconsistently affected and abnormal higher-molecular-weight NF proteins were detected in the P1 fraction only. Studies with antibodies directed against phosphorylated (RT97) and nonphosphorylated (SMI32) epitopes on NF-H and measurements of corresponding isoelectric range suggested that alterations in phosphorylation were not involved. The selective depletion of Triton-soluble protein suggested that HD adduction of NFs interfered with the dynamic interactions of the polymeric and mobile monomeric pools.
Collapse
Affiliation(s)
- Richard M LoPachin
- Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA.
| | | | | | | |
Collapse
|
13
|
LoPachin RM, DeCaprio AP. γ-Diketone neuropathy: axon atrophy and the role of cytoskeletal protein adduction. Toxicol Appl Pharmacol 2004; 199:20-34. [PMID: 15289087 DOI: 10.1016/j.taap.2004.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
Abstract
Multifocal giant neurofilamentous axonal swellings and secondary distal degeneration have been historically considered the hallmark features of gamma-diketone neuropathy. Accordingly, research conducted over the past 25 years has been directed toward discerning mechanisms of axonal swelling. However, this neuropathological convention has been challenged by recent observations that swollen axons were an exclusive product of long-term 2.5-hexanedione (HD) intoxication at lower daily dose-rates (e.g., 175 mg/kg/day); that is, higher HD dose-rates (e.g., 400 mg/kg/day) produced neurological deficits in the absence of axonal swellings. The observation that neurological toxicity can be expressed without axonal swelling suggests that this lesion is not an important pathophysiological event. Instead, several research groups have now shown that axon atrophy is prevalent in nervous tissues of laboratory animals intoxicated over a wide range of HD dose-rates. The well-documented nerve conduction defects associated with axon atrophy, in conjunction with the temporal correspondence between this lesion and the onset of neurological deficits, strongly suggest that atrophy has pathophysiological significance. In this commentary, we present evidence that supports a pathognomonic role for axon atrophy in gamma-diketone neuropathy and suggests that the functional consequences of this lesion mediate the corresponding neurological toxicity. Previous research has demonstrated that HD interacts with proteins via formation of pyrrole adducts. We therefore discuss the possibility that this chemical process is essential to the mechanism of atrophy. Evidence presented in this review suggests that "distal axonopathy" is an inaccurate classification and future nosological schemes should be based on the apparent primacy of axon atrophy.
Collapse
Affiliation(s)
- Richard M LoPachin
- Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467-2490, USA.
| | | |
Collapse
|
14
|
Mateus ML, dos Santos APM, Batoréu MCC. Evidence of zinc protection against 2,5-hexanedione neurotoxicity: correlation of neurobehavioral testing with biomarkers of excretion. Neurotoxicology 2002; 23:747-54. [PMID: 12520764 DOI: 10.1016/s0161-813x(02)00011-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Risk prevention of human exposure against n-hexane neurotoxicity is relevant towards the protective measures to be proposed in occupational toxicology. Metabolic studies have identified 2,5-hexanedione (2,5-HD) as the main neurotoxic metabolite of n-hexane, which reacts with amino groups of lysine in axonal neurofilaments forming 2,5-dimethylpyrrole adducts, which are responsible for n-hexane neurotoxicity. In the present study, we have investigated the interaction of zinc with 2,5-HD, by correlating the decrease of pyrrole derivatives excretion with changes of neurobehavioral effects. Two subchronic experiments (11 and 8 weeks of exposure) were performed in Wistar rats exposed to different doses of 2,5-HD (200, 400 mg/kg per day) and to the mixture of 2,5-HD + zinc acetate (200 + 300 mg/kg per day) and (400 + 500 mg/kg per day). The results obtained show a significant increase in the excretion of pyrroles in the groups exposed to 2,5-HD alone as compared to controls, and a significant decrease in the excretion of pyrrole derivatives in the groups of rats co-exposed to 2,5-HD + zinc acetate when compared to the rats exposed to 2,5-HD alone. These biochemical changes were immediately evident after the first day of exposure. Simultaneously, neurobehavioral testing (rearing and ambulation in open field) was performed weekly in the same groups of rats. The results demonstrated a significant decrease in neurobehavioral dysfunction in rats co-exposed to 2,5-HD and zinc acetate. At the end of the exposure period, pyrroles levels returned to control values progressively, and the recovery of the neurotoxic effects was gradually established depending on the dose of exposure. The results suggest that zinc is a potential chemo-protector against 2,5-HD neurotoxicity which was identified by neurobehavioral testing. Moreover, pyrrole derivatives are good predictive biochemical biomarkers of 2,5-HD exposure and could be used as a complementary tool to characterize its neurotoxic effects.
Collapse
Affiliation(s)
- M Luisa Mateus
- Laboratory of Toxicology, Faculty of Pharmacy, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | | | | |
Collapse
|
15
|
Heijink E, Scholten SW, Bolhuis PA, de Wolff FA. Effects of 2,5-hexanedione on calpain-mediated degradation of human neurofilaments in vitro. Chem Biol Interact 2000; 129:231-47. [PMID: 11137063 DOI: 10.1016/s0009-2797(00)00207-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
2,5-Hexanedione (2,5-HD), the neurotoxic metabolite of n-hexane, can structurally modify neurofilaments (NF) by pyrrole adduct formation and subsequent covalent cross-linking. 2,5-HD also induces accumulations of NF within the pre-terminal axon. We examined whether exposure of NF to 2,5-HD affected NF degradation. Two different models were used: (1) NF-enriched cytoskeletons isolated from human sciatic nerve were incubated with 2,5-HD in vitro and (2) differentiated human neuroblastoma cells (SK-N-SH) were exposed to 2, 5-HD in culture prior to isolation of cytoskeletal proteins. The cytoskeletal preparations were subsequently incubated with calpain II. The amount of NF-H and NF-L remaining after proteolysis was determined by SDS-PAGE and quantitative immunoblotting. NF-M proteolysis could not be quantified. Incubation of sciatic nerve cytoskeletal preparations with 2,5-HD resulted in cross-linking of all three NF proteins into high molecular weight (HMW) material with a range of molecular weights. Proteolysis of the NF-H and NF-L polypeptides was not affected by 2,5-HD-exposure. Degradation of the HMW material containing NF-H or NF-L was retarded when comparing with degradation of the NF-H and NF-L polypeptides, respectively, from control samples, but not as compared to the corresponding NF polypeptides from 2,5-HD-treated samples. Exposure of SK-N-SH cells to 2,5-HD also resulted in considerable cross-linking of NF. No differences were found between the proteolytic rates of NF-L and NF-H from exposed cells as compared with those subunits from control cells. Moreover, degradation of cross-linked NF-H was not different from monomeric NF-H. In conclusion, whether 2,5-HD affects calpain-mediated degradation of cross-linked NF proteins will depend on which model better reflects NF cross-linking as occurring in 2, 5-HD-induced axonopathy. However, with both models it was demonstrated that exposure of NF proteins to 2,5-HD without subsequent cross-linking is not adequate to inhibit NF proteolysis in vitro by added calpain.
Collapse
Affiliation(s)
- E Heijink
- Coronel Institute for Occupational and Environmental Health, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
16
|
DeCaprio AP, Kinney EA, Fowke JH. Regioselective binding of 2,5-hexanedione to high-molecular-weight rat neurofilament proteins in vitro. Toxicol Appl Pharmacol 1997; 145:211-7. [PMID: 9221839 DOI: 10.1006/taap.1997.8181] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous studies have shown selective binding of the neurotoxicant 2,5-hexanedione (2,5-HD) to carboxyl-terminal domains of rat neurofilament (NF) M and H proteins in vitro. The present study was designed to further localize this binding in native rat NF preparations exposed to [14C]2,5-HD. Purified M and H proteins from 2,5-HD-treated NFs were subjected to cyanogen bromide (CNBr) cleavage, and the resultant peptides were separated by Tris-tricine SDS-PAGE and electroblotted to PVDF membranes. Peptides were identified by direct sequencing of stained bands and the relative radiolabeling of each peptide was determined by comparing band intensities in fluorographed blots. For NF-M, the highest label was found in CNBr 10, a peptide corresponding to residues 678-846 at the extreme carboxyl terminus. This region of the protein includes three highly conserved lysine-containing sequences believed to be critical to its function. For NF-H, the greatest binding was localized in CNBr 7 + 8, representing an incomplete cleavage product of residues 390-810. This peptide contains essentially all of the phosphorylation sites in the carboxyl terminus of NF-H, a domain believed to control NF interactions in the axon. Only minor radiolabeling was observed in other M or H peptides. Extensive dephosphorylation of NFs prior to 2,5-HD exposure had no effect on relative adduct levels in each protein. These results provide additional support for limited and specific binding of 2,5-HD to neurofilaments and indicate that the phosphorylation state of the protein may not substantially influence this binding.
Collapse
Affiliation(s)
- A P DeCaprio
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201, USA
| | | | | |
Collapse
|
17
|
Zhu M, DeCaprio AP, Hauer CR, Spink DC. Characterization of glutathione conjugates of pyrrolylated amino acids and peptides by liquid chromatography-mass spectrometry and tandem mass spectrometry with electrospray ionization. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1997; 688:187-96. [PMID: 9061455 DOI: 10.1016/s0378-4347(96)00277-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
High-performance liquid chromatography (HPLC) coupled with electrospray mass spectrometry (ES-MS) and tandem mass spectrometry (MS-MS) was used to identify the products formed upon reaction of lysine-containing peptides with the neurotoxicant 2,5-hexanedione (2,5-HD). In addition, secondary autoxidative reaction products of the resultant alkylpyrroles with the biological thiol, glutathione, were characterized. ES mass spectra of the HPLC-separated conjugates showed intense [M+H]+ ions as well as several ions formed by amide and C-S bond cleavage. The glutathione conjugates of pyrrolylated amino acids and peptides were analyzed by ES ionization and MS-MS, and product-ion spectra showed fragmentation pathways typical of glutathione conjugates. ES-MS-MS analysis of a synthetic nonapeptide modeling a sequence found in neurofilament proteins showed pyrrole formation after incubation with 2,5-HD, and sequence ions were used to assign the position of the pyrrole adduct. Subsequent reaction of the pyrrolylated peptide with reduced glutathione was evidenced by a shift in m/z of the sequence ions of the reaction products with or without prior methylation. The results demonstrate the utility of ES-MS and ES-MS-MS in the characterization of xenobiotic-modified peptides and confirm that stable pyrrole-thiol conjugates are formed by the reaction of biological thiols with pyrrolylated peptides.
Collapse
Affiliation(s)
- M Zhu
- Wadsworth Center, New York State Department of Health, Albany 12201-0509, USA
| | | | | | | |
Collapse
|
18
|
Yan B, DeCaprio AP, Zhu M, Bank S. Solid-state 13C-NMR spectroscopy of adduction products of 2,5-hexanedione with ribonuclease, albumin, and rat neurofilament protein. Chem Biol Interact 1996; 102:101-16. [PMID: 8950225 DOI: 10.1016/s0009-2797(96)03738-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Paal-Knorr condensation reaction between the gamma-diketone 2,5-hexanedione (2,5-HD) and epsilon-amine moieties of proteins of various molecular weight, including ribonuclease (RNase), bovine serum albumin (BSA) and rat neurofilament (NF), has been investigated by solid-state 13C-NMR spectroscopy. These proteins all reacted with 2,5-HD with the formation of 2,5-dimethylpyrrole (2,5-DMP) derivatives. The size and complexity of the protein affected the rate of formation of 2,5-DMP derivatives. Using the selective reducing reagent NaCNBH3, the Paal-Knorr reaction intermediates were trapped by conversion into amines, which were identified by solid-state NMR spectroscopy. The secondary autoxidation reaction following the formation of 2,5-DMP derivatives was also studied by solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- B Yan
- Department of Chemistry, University at Albany, State University of New York 12222, USA
| | | | | | | |
Collapse
|
19
|
Graham DG, Amarnath V, Valentine WM, Pyle SJ, Anthony DC. Pathogenetic studies of hexane and carbon disulfide neurotoxicity. Crit Rev Toxicol 1995; 25:91-112. [PMID: 7612176 DOI: 10.3109/10408449509021609] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two commonly employed solvents, n-hexane and carbon disulfide (CS2), although chemically dissimilar, result in identical neurofilament-filled swellings of the distal axon in both the central and peripheral nervous systems. Whereas CS2 is itself a neurotoxicant, hexane requires metabolism to the gamma-diketone, 2,5-hexanedione (HD). Both HD and CS2 react with protein amino functions to yield initial adducts (pyrrolyl or dithiocarbamate derivatives, respectively), which then undergo oxidation or decomposition to an electrophile (oxidized pyrrole ring or isothiocyanate), that then reacts with protein nucleophiles to result in protein cross-linking. It is postulated that progressive cross-linking of the stable neurofilament during its anterograde transport in the longest axons ultimately results in the accumulation of neurofilaments within axonal swellings. Reaction with additional targets appears to be responsible for the degeneration of the axon distal to the swellings.
Collapse
Affiliation(s)
- D G Graham
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
20
|
Lanning CL, Wilmarth KR, Abou-Donia MB. In vitro binding of [14C]2,5-hexanedione to rat neuronal cytoskeletal proteins. Neurochem Res 1994; 19:1165-73. [PMID: 7824070 DOI: 10.1007/bf00965151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
2,5-Hexanedione (2,5-HD) induces central-peripheral axonpathy characterized by the accumulation of 10-nm neurofilaments proximal to the nodes of Ranvier and a Wallerian-type degeneration. It has been postulated that neurofilament crosslinking may be involved in the production of this axonopathy. A potential initiating event in this neurotoxic process may be the direct binding of 2,5-HD to neurofilament and microtubule proteins. In this study, the in vitro binding of [14C]2,5-HD to neurofilament and microtubule proteins was examined. Neurofilament proteins isolated from rat spinal cord or microtubule proteins isolated from rat brain were incubated in the presence of 2,5-HD at concentrations ranging from 25 to 500 mM. Quantitative analysis of sodium dodecyl sulfate (SDS) polyacrylamide gels revealed a dose- and time-dependent binding of 2,5-HD to both neurofilament proteins and microtubule proteins. Expressed as pmol 2,5-HD bound per microgram protein, the observed relative binding was MAP2 > NF160 > NF200 > > NF68 > tubulin. These data demonstrate the direct binding of 2,5-HD to cytoskeletal proteins including both neurofilaments and microtubules.
Collapse
Affiliation(s)
- C L Lanning
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | |
Collapse
|
21
|
Wilmarth KR, Viana ME, Abou-Donia MB. Carbon disulfide inhalation increases Ca2+/calmodulin-dependent kinase phosphorylation of cytoskeletal proteins in the rat central nervous system. Brain Res 1993; 628:293-300. [PMID: 8313158 DOI: 10.1016/0006-8993(93)90967-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Ca2+/calmodulin-dependent phosphorylation of neuronal cytoskeletal proteins was studied in brain supernatants prepared from rats exposed via inhalation to 600 to 800 ppm carbon disulfide (CS2) for 14 days. Exposure to CS2 resulted in increased phosphorylation of endogenous MAP-2 and exogenously added neurofilament triplet proteins. There also was an observed increase in the autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). Slight increases in the binding of a monoclonal antibody to the alpha subunit of CaM kinase II were seen, while large increases in the binding of [125I]calmodulin to the alpha subunit of CaM kinase II also were observed. The finding of large increases in the autophosphorylation and calmodulin-binding to CaM kinase II with only slight increases in the amount of antibody-binding suggests that CS2 exposure results in increased Ca2+/calmodulin-dependent phosphorylation of proteins by inducing an increase in kinase activity.
Collapse
Affiliation(s)
- K R Wilmarth
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27710
| | | | | |
Collapse
|