Garlov PE. Plasticity of nonapeptidergic neurosecretory cells in fish hypothalamus and neurohypophysis.
ACTA ACUST UNITED AC 2006;
245:123-70. [PMID:
16125547 DOI:
10.1016/s0074-7696(05)45005-6]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The structure and function of nonapeptidergic neurosecretory cells (NP-NSC) are considered in terms of comparative morphology. Among NSC of different ergicity for NP-NSC the most characteristic involve massive accumulation and storage of neurohormonal products. Only in NP-NSC are the secretory cycles of functioning clearly expressed. Their highest reactivity is established during experimental and physiological stresses. In contrast, liberinergic, statinergic, and monoaminergic NSC, unlike NP-NSC, are characterized even in the "norm" by a constantly high level of extrusion processes. As signs of maximum NP-NSC plasticity, we consider the largest size of elementary neurosecretory granules, the diversity of secretion forms, and the maximum development of Herring bodies-clear manifestations of secretory cycles of functioning. In particular, phases of massive storage of neurosecretory granules in the extrusion cycle of NP-NSC neurosecretory terminals express accumulation of neurosecretory products. It is concluded that a particularly high degree of plasticity of NP-NSC is provided by their capability for functional reversion. This reversion is manifested first in the form of the restoration of the initial moderate level of functioning and especially in the accumulation of neurosecretory products. The reversion is considered an important mechanism providing a high degree of NSC plasticity. This degree turns out to be sufficient for participation of NP-NSC in the integration of fish reproduction. It is shown that NP-NSC are organized by the principle of a triad of the balanced system. This system consists of two alternative states: accumulation and release of neurosecretory products and the center of control of dynamics of their interrelations, the self-regulating center. In the latter, the key role is probably played by the Golgi complex.
Collapse