1
|
Banjara R, Thapa P, Kela SH, Wu F, Zhu J. Synthesis of 2,3-diazido-2,3-dideoxy-β-d-mannosides and 2,3-diazido-2,3-dideoxy-β-d-mannuronic acid via stereoselective anomeric O-alkylation. Carbohydr Res 2024; 545:109279. [PMID: 39326206 DOI: 10.1016/j.carres.2024.109279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Stereoselective synthesis of 2,3-diazido-2,3-dideoxy-β-d-mannosides has been accomplished via Cs2CO3-mediated anomeric O-alkylation of 2,3-diazido-2,3-dideoxy-β-d-mannoses with primary electrophiles. Selective oxidation of the C6 primary alcohol of the 2,3-diazido-2,3-dideoxy-β-d-mannoside successfully produced corresponding 2,3-diazido-2,3-dideoxy-β-d-mannuronic acid.
Collapse
Affiliation(s)
- Rama Banjara
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, OH, 43606, United States
| | - Prakash Thapa
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, OH, 43606, United States
| | - Shailja Hitesh Kela
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, OH, 43606, United States
| | - Fenglang Wu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, OH, 43606, United States
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, OH, 43606, United States.
| |
Collapse
|
2
|
Wu X, Zheng Z, Wang L, Xue Y, Liao J, Liu H, Liu D, Sun JS, Zhang Q. Stereoselective Synthesis of 2,3‐diamino‐2,3‐dideoxyglycosides from 3‐O‐acetyl‐2‐nitroglycals. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaopei Wu
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Zhichao Zheng
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Liming Wang
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Yunxia Xue
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Jinxi Liao
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Hui Liu
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Deyong Liu
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Jian-Song Sun
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Qingju Zhang
- Jiangxi Normal University National Research Centre for Carbohydrate Synthesis 99 Ziyang Avenue 330022 Nanchang CHINA
| |
Collapse
|
3
|
Schäffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiol Rev 2016; 41:49-91. [PMID: 27566466 DOI: 10.1093/femsre/fuw036] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/17/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Glycosylation of proteins is one of the most prevalent post-translational modifications occurring in nature, with a wide repertoire of biological implications. Pathways for the main types of this modification, the N- and O-glycosylation, can be found in all three domains of life-the Eukarya, Bacteria and Archaea-thereby following common principles, which are valid also for lipopolysaccharides, lipooligosaccharides and glycopolymers. Thus, studies on any glycoconjugate can unravel novel facets of the still incompletely understood fundamentals of protein N- and O-glycosylation. While it is estimated that more than two-thirds of all eukaryotic proteins would be glycosylated, no such estimate is available for prokaryotic glycoproteins, whose understanding is lagging behind, mainly due to the enormous variability of their glycan structures and variations in the underlying glycosylation processes. Combining glycan structural information with bioinformatic, genetic, biochemical and enzymatic data has opened up an avenue for in-depth analyses of glycosylation processes as a basis for glycoengineering endeavours. Here, the common themes of glycosylation are conceptualised for the major classes of prokaryotic (i.e. bacterial and archaeal) glycoconjugates, with a special focus on glycosylated cell-surface proteins. We describe the current knowledge of biosynthesis and importance of these glycoconjugates in selected pathogenic and beneficial microbes.
Collapse
Affiliation(s)
- Christina Schäffer
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| |
Collapse
|
4
|
Abstract
Prokaryotic glycosylation fulfills an important role in maintaining and protecting the structural integrity and function of the bacterial cell wall, as well as serving as a flexible adaption mechanism to evade environmental and host-induced pressure. The scope of bacterial and archaeal protein glycosylation has considerably expanded over the past decade(s), with numerous examples covering the glycosylation of flagella, pili, glycosylated enzymes, as well as surface-layer proteins. This article addresses structure, analysis, function, genetic basis, biosynthesis, and biomedical and biotechnological applications of cell-envelope glycoconjugates, S-layer glycoprotein glycans, and "nonclassical" secondary-cell wall polysaccharides. The latter group of polymers mediates the important attachment and regular orientation of the S-layer to the cell wall. The structures of these glycopolymers reveal an enormous diversity, resembling the structural variability of bacterial lipopolysaccharides and capsular polysaccharides. While most examples are presented for Gram-positive bacteria, the S-layer glycan of the Gram-negative pathogen Tannerella forsythia is also discussed. In addition, archaeal S-layer glycoproteins are briefly summarized.
Collapse
Affiliation(s)
- Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | |
Collapse
|
5
|
Walvoort MTC, Moggré GJ, Lodder G, Overkleeft HS, Codée JDC, van der Marel GA. Stereoselective Synthesis of 2,3-Diamino-2,3-dideoxy-β-d-mannopyranosyl Uronates. J Org Chem 2011; 76:7301-15. [DOI: 10.1021/jo201179p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marthe T. C. Walvoort
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Gert-Jan Moggré
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Gerrit Lodder
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
6
|
Biosynthesis of a rare di-N-acetylated sugar in the lipopolysaccharides of both Pseudomonas aeruginosa and Bordetella pertussis occurs via an identical scheme despite different gene clusters. J Bacteriol 2008; 190:6060-9. [PMID: 18621892 DOI: 10.1128/jb.00579-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa and Bordetella pertussis produce lipopolysaccharide (LPS) that contains 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid (D-ManNAc3NAcA). A five-enzyme biosynthetic pathway that requires WbpA, WbpB, WbpE, WbpD, and WbpI has been proposed for the production of this sugar in P. aeruginosa, based on analysis of genes present in the B-band LPS biosynthesis cluster. In the analogous B. pertussis cluster, homologs of wbpB to wbpI were present, but a putative dehydrogenase gene was missing; therefore, the biosynthetic mechanism for UDP-D-ManNAc3NAcA was unclear. Nonpolar knockout mutants of each P. aeruginosa gene were constructed. Complementation analysis of the mutants demonstrated that B-band LPS production was restored to P. aeruginosa knockout mutants when the relevant B. pertussis genes were supplied in trans. Thus, the genes that encode the putative oxidase, transaminase, N-acetyltransferase, and epimerase enzymes in B. pertussis are functional homologs of those in P. aeruginosa. Two candidate dehydrogenase genes were located by searching the B. pertussis genome; these have 80% identity to P. aeruginosa wbpO (serotype O6) and 32% identity to wbpA (serotype O5). These genes, wbpO(1629) and wbpO(3150), were shown to complement a wbpA knockout of P. aeruginosa. Capillary electrophoresis was used to characterize the enzymatic activities of purified WbpO(1629) and WbpO(3150), and mass spectrometry analysis confirmed that the two enzymes are dehydrogenases capable of converting UDP-D-GlcNAc, UDP-D-GalNAc, to a lesser extent, and UDP-D-Glc, to a much lesser extent. Together, these results suggest that B. pertussis produces UDP-D-ManNAc3NAcA through the same pathway proposed for P. aeruginosa, despite differences in the genomic context of the genes involved.
Collapse
|
7
|
Schäffer C, Messner P. The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together. MICROBIOLOGY-SGM 2005; 151:643-651. [PMID: 15758211 DOI: 10.1099/mic.0.27749-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cell wall of Gram-positive bacteria has been a subject of detailed chemical study over the past five decades. Outside the cytoplasmic membrane of these organisms the fundamental polymer is peptidoglycan (PG), which is responsible for the maintenance of cell shape and osmotic stability. In addition, typical essential cell wall polymers such as teichoic or teichuronic acids are linked to some of the peptidoglycan chains. In this review these compounds are considered as 'classical' cell wall polymers. In the course of recent investigations of bacterial cell surface layers (S-layers) a different class of 'non-classical' secondary cell wall polymers (SCWPs) has been identified, which is involved in anchoring of S-layers to the bacterial cell surface. Comparative analyses have shown considerable differences in chemical composition, overall structure and charge behaviour of these SCWPs. This review discusses the progress that has been made in understanding the structural principles of SCWPs, which may have useful applications in S-layer-based 'supramolecular construction kits' in nanobiotechnology.
Collapse
Affiliation(s)
- Christina Schäffer
- Zentrum für NanoBiotechnologie, Universität für Bodenkultur Wien, A-1180 Wien, Austria
| | - Paul Messner
- Zentrum für NanoBiotechnologie, Universität für Bodenkultur Wien, A-1180 Wien, Austria
| |
Collapse
|
8
|
Messner P, Schäffer C. Prokaryotic glycoproteins. FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE = PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS. PROGRES DANS LA CHIMIE DES SUBSTANCES ORGANIQUES NATURELLES 2003; 85:51-124. [PMID: 12602037 DOI: 10.1007/978-3-7091-6051-0_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- P Messner
- Zentrum für Ultrastrukturforschung, Ludwig-Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, Austria
| | | |
Collapse
|
9
|
Nilsson M, Norberg T. Synthesis of a spacer-containing disaccharide fragment of Bordetella pertussis lipopolysaccharide. Carbohydr Res 2000; 327:261-7. [PMID: 10945674 DOI: 10.1016/s0008-6215(99)00318-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The disaccharide 2-(p-aminophenyl)ethyl 4-O-(2-acetamido-2-deoxy-alpha-D-glucopyranosyl)-2,3-diacetamido-2 ,3-dideoxy-alpha-D-mannopyranoside uronate, which is assumed to be a partial structure of the Bordetella pertussis polysaccharide, was synthesized starting from D-glucose and D-glucosamine, respectively. The major synthetic transformations were conversion of D-glucosamine into the donor ethyl 3,4,6-tri-O-acetyl-2-azido-2-deoxy-1-thio-beta-D-glucopyranoside and conversion of glucose, by a sequence involving 2,3-epoxide formation/opening, nucleophilic triflate displacement in the 3-position, and necessary protecting group manipulations, into the acceptor 2-(p-trifluoroacetamidophenyl)ethyl 6-O-benzyl-2,3-diazido-2,3-dideoxy-alpha-D-mannopyranoside. Coupling of the donor and acceptor units promoted by dimethyl(methylthio)sulfonium triflate followed by selective oxidation of the 6'-position and deprotection gave the target disaccharide.
Collapse
Affiliation(s)
- M Nilsson
- Department of Chemistry, Swedish University of Agricultural Sciences, Uppsala
| | | |
Collapse
|
10
|
Sleytr UB, Messner P, Pum D, Sára M. Kristalline Zelloberflächen-Schichten prokaryotischer Organismen (S-Schichten): von der supramolekularen Zellstruktur zur Biomimetik und Nanotechnologie. Angew Chem Int Ed Engl 1999. [DOI: 10.1002/(sici)1521-3757(19990419)111:8<1098::aid-ange1098>3.0.co;2-f] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Sidhu MS, Olsen I. S-layers of Bacillus species. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 4):1039-1052. [PMID: 9141671 DOI: 10.1099/00221287-143-4-1039] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Maan Singh Sidhu
- Department of Oral Biology, Dental Faculty, University of Oslo, POB 1052, Blindern 0316, Oslo Norway
| | - Ingar Olsen
- Department of Oral Biology, Dental Faculty, University of Oslo, POB 1052, Blindern 0316, Oslo Norway
| |
Collapse
|
12
|
Abstract
Glycoproteins are a diverse group of complex macromolecules that are present in virtually all forms of life. Their presence in prokaryotes, however, has been demonstrated, and accepted, only recently. Bacterial glycoproteins have been identified in many archaeobacteria and in eubacteria. They comprise a wide range of different cell envelope components such as membrane-associated glycoproteins, surface-associated glycoproteins and crystalline surface layers (S-layers), as well as secreted glycoproteins and exoenzymes. Even their occurrence in the cytoplasm cannot yet be ruled out. This minireview tries to cover the whole subject as completely as possible and refers to available information on presence, structure, biosynthesis, and molecular biology of bacterial glycoproteins.
Collapse
Affiliation(s)
- P Messner
- Zentrum für Ultrastrukturforschung, Universität für Bodenkultur, Wien, Austria
| |
Collapse
|
13
|
Sára M, Pum D, Küpcü S, Messner P, Sleytr UB. Isolation of two physiologically induced variant strains of Bacillus stearothermophilus NRS 2004/3a and characterization of their S-layer lattices. J Bacteriol 1994; 176:848-60. [PMID: 8300538 PMCID: PMC205123 DOI: 10.1128/jb.176.3.848-860.1994] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
During growth of Bacillus stearothermophilus NRS 2004/3a in continuous culture on complex medium, the chemical properties of the S-layer glycoprotein and the characteristic oblique lattice were maintained only if glucose was used as the sole carbon source. With increased aeration, amino acids were also metabolized, accompanied by liberation of ammonium and by changes in the S-layer protein. Depending on the stage of fermentation at which oxygen limitation was relieved, two different variants, one with a more delicate oblique S-layer lattice (variant 3a/V1) and one with a square S-layer lattice (variant 3a/V2), were isolated. During the switch from the wild-type strain to a variant or from variant 3a/V2 to variant 3a/V1, monolayers of two types of S-layer lattices could be demonstrated on the surfaces of single cells. S-layer proteins from variants had different molecular sizes and a significantly lower carbohydrate content than S-layer proteins from the wild-type strain did. Although the S-layer lattices from the wild-type and variant strains showed quite different protein mass distributions in two- and three-dimensional reconstructions, neither the amino acid composition nor the pore size, as determined by permeability studies, was significantly changed. Peptide mapping and N-terminal sequencing results strongly indicated that the three S-layer proteins are encoded by different genes and are not derived from a universal precursor form.
Collapse
Affiliation(s)
- M Sára
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur, Vienna, Austria
| | | | | | | | | |
Collapse
|
14
|
Messner P, Mazid MA, Unger FM, Sleytr UB. Artificial antigens. Synthetic carbohydrate haptens immobilized on crystalline bacterial surface layer glycoproteins. Carbohydr Res 1992; 233:175-84. [PMID: 1446307 DOI: 10.1016/s0008-6215(00)90929-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The crystalline surface-layer glycoproteins of Clostridium thermohydrosulfuricum L111-69, Bacillus stearothermophilus NRS 2004/3a and Bacillus alvei CCM 2051 were used for immobilization of spacer-linked blood group A-trisaccharide (alpha GalNAc(1----3)[alpha Fuc(1----2)]beta Gal) and of the spacer-linked, tumor-associated T-disaccharide [beta Gal(1----3)alpha GalNAc]. The immobilization involved the glycan portions of surface-layer glycoproteins. Different activation methods were used, namely, periodate oxidation, or treatment with epichlorohydrin or divinyl sulfone, followed by coupling of the hapten under appropriate conditions. The resulting conjugates are useful for assessing the application potential of haptenated surface layer preparations as carrier/adjuvants for the induction of immunity to poorly immunogenic molecules.
Collapse
Affiliation(s)
- P Messner
- CHEMBIOMED Ltd., Edmonton Research Park, Alberta, Canada
| | | | | | | |
Collapse
|
15
|
Affiliation(s)
- P Messner
- Zentrum für Ultrastrukturforschung, Universität für Bodenkultur, Wien, Austria
| | | |
Collapse
|
16
|
Messner P, Bock K, Christian R, Schulz G, Sleytr UB. Characterization of the surface layer glycoprotein of Clostridium symbiosum HB25. J Bacteriol 1990; 172:2576-83. [PMID: 2332405 PMCID: PMC208900 DOI: 10.1128/jb.172.5.2576-2583.1990] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cell surface of Clostridium symbiosum HB25 is covered by a squarely arranged surface layer (S-layer) glycoprotein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the sodium dodecyl sulfate-soluble whole-cell extract showed the presence of several high-molecular-weight protein bands in a narrow range (approximate Mr, 140,000) which, upon periodic acid-Schiff staining, gave a positive reaction. After proteolytic degradation of the purified S-layer glycoprotein, a single glycopeptide fraction was obtained by gel permeation chromatography. Hydrolysis, treatment with aqueous hydrofluoric acid, and 1H and 13C nuclear magnetic resonance studies showed that the glycoprotein glycan is a high-molecular-weight polymer (approximate Mr, 15,000) of tetrasaccharide repeating units with the component sugars N-acetylgalactosamine (GalNAc), N-acetylmannosamine (ManNAc), and N-acetylbacillosamine (BacNAc; 2-N-acetyl-4-amino-2,4,6-trideoxy glucose) linked by monophosphate diesters. The following structure is proposed: [----6)-alpha-D-ManpNAc-(1----4)-beta-D-GalpNAc-(1----3)-alpha-D-+ ++BacpNAc- (1----4)-alpha-D-GalpNAc-(1----PO3)----]n. The nuclear magnetic resonance data provided evidence for a charge interaction between the free amino group of BacNAc and the phosphate group of adjacent glycan chains. Since polycationic ferritin did not label the cell surface of intact cells, an electrostatic interaction can also be expected in vivo, leading to a charge-neutral outer surface, which is characteristic of all other S layers from members of the family Bacillaceae studied so far.
Collapse
Affiliation(s)
- P Messner
- Zentrum für Ultrastrukturforschung, Universität für Bodenkultur, Vienna, Austria
| | | | | | | | | |
Collapse
|
17
|
Altman E, Brisson JR, Messner P, Sleytr UB. Chemical characterization of the regularly arranged surface layer glycoprotein of Clostridium thermosaccharolyticum D120-70. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 188:73-82. [PMID: 2318204 DOI: 10.1111/j.1432-1033.1990.tb15373.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Clostridium thermosaccharolyticum D120-70 possesses as its outermost cell envelope layer a square-arranged array of glycoprotein molecules. SDS/polyacrylamide gel electrophoresis of the purified surface layer showed a broadened band in the molecular mass range of about 115 kDa which, upon periodic acid/Schiff staining, gave a positive reaction. After proteolytic degradation of this material, two glycopeptide fractions were obtained. One- and two-dimensional nuclear magnetic resonance studies, together with methylation analysis and periodate oxidation, were used to determine the structures of the polysaccharide portions of these glycopeptides. The combined chemical and spectroscopic evidence suggests the following structures: (formula; see text).
Collapse
Affiliation(s)
- E Altman
- Division of Biological Sciences, National Research Council, Ottawa, Canada
| | | | | | | |
Collapse
|
18
|
Affiliation(s)
- U B Sleytr
- Zentrum für Ultrastrukturforschung, Universität für Bodenkultur, Vienna, Austria
| | | |
Collapse
|
19
|
Christian R, Messner P, Weiner C, Sleytr UB, Schulz G. Structure of a glycan from the surface-layer glycoprotein of Clostridium thermohydrosulfuricum strain L111-69. Carbohydr Res 1988; 176:160-3. [PMID: 3401883 DOI: 10.1016/0008-6215(88)84069-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- R Christian
- Institut für Chemie der Universität für Bodenkultur, Wien, Austria
| | | | | | | | | |
Collapse
|
20
|
Messner P, Sleytr UB. Asparaginyl-rhamnose: a novel type of protein-carbohydrate linkage in a eubacterial surface-layer glycoprotein. FEBS Lett 1988; 228:317-20. [PMID: 3342887 DOI: 10.1016/0014-5793(88)80023-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The subunits of the crystalline surface layer of Bacillus stearothermophilus, strain NRS 2004/3a contain carbohydrates covalently linked to protein. Hydrolysis of a glycopeptide obtained by pronase digestion of the glycoprotein and analysis of the fragments revealed that rhamnose is N-glycosidically linked to the amide nitrogen of an asparaginyl residue.
Collapse
Affiliation(s)
- P Messner
- Zentrum für Ultrastrukturforschung, Universität für Bodenkultur, Wien, Austria
| | | |
Collapse
|