Structural and genetic characterization of the O-antigen of Enterobacter cloacae C5529 related to the O-antigen of E. cloacae G3054.
Carbohydr Res 2017;
443-444:49-52. [PMID:
28342969 DOI:
10.1016/j.carres.2017.02.006]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/19/2017] [Accepted: 02/23/2017] [Indexed: 11/22/2022]
Abstract
On mild acid degradation of the lipopolysaccharide of Enterobacter cloacae C5529, the O-polysaccharide chain was cleaved at the linkages of 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-non-2-ulosonic acid (di-N-acetylpseudaminic acid, Psep5Ac7Ac). The resultant oligosaccharide and an alkali-treated lipopolysaccharide were studied by sugar analysis along with 1H and 13C NMR spectroscopy, and the following structure of the tetrasaccharide repeating unit of the O-polysaccharide was established: →4)-β-Psep5Ac7Ac-(2 → 3)-β-d-Galp-(1 → 6)-β-d-Galf-(1 → 3)-α-d-Galp-(1→ It differs from a structurally related O-polysaccharide of E. cloacae G3045 studied early (Perepelov, A. V.; Wang, M.; Filatov, A. V.; Guo, X.; Shashkov, A. S.; Wang, L.; Knirel, Y. A. Carbohydr. Res. 2015; 407:59-62) in positions of substitution of β-Psep5Ac7Ac (O-4 vs. O-8) and β-Galp (O-3 vs. O-6) and the absence of a side-chain α-Galp residue. The O-antigen gene clusters of E. cloacae C5529 and G3045 are organized identically and include genes with the same putative functions in the O-polysaccharide synthesis. Based on these and serological data, it is suggested to combine E. cloacae C5529 and G3054 in one O-serogroup as two subgroups.
Collapse