1
|
Karmakar M, Mondal H, Ghosh NN, Chattopadhyay PK, Singha NR. Synthesis of gum tragacanth-grafted pentapolymer hydrogels for As(III) exclusion: Roles of microwaves, RSM optimization, and DFT studies. Int J Biol Macromol 2021; 184:909-925. [PMID: 34144070 DOI: 10.1016/j.ijbiomac.2021.06.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/25/2022]
Abstract
Microwave assisted homogeneous heating, selectivity in radical formation, and the faster polymerization facilitate the synthesis, structures, properties, and the higher branching associated stability of multifunctional multipolymers. Thus, the optimum gum tragacanth (GMTR)-grafted pentapolymer hydrogel/ HG2 was synthesized from three monomers, i.e., cis-butenedioic acid (cBDA), N-hydroxymethylacryalamide (NHMAm), and 2-(methacryloyloxy)ethanol (MAOE), and in situ generated 2-(3-((hydroxymethyl)amino)-3-oxopropoxy)ethyl-2-methylbutanoate (CM1) and 2-hydroxyethyl 3-(N-(hydroxymethyl)-2-methylbutanamido)-2-methylpropanoate (CM2) comonomers through microwave assisted facile polymerization in aqueous medium. Here, twenty-one GMTR-grafted-[cBDA-co-CM1-co-NHMAm-co-CM2-co-MAOE/ HG1] hydrogels were prepared by using variable amounts of synthesis parameters, of which the optimum HG2 was chosen for the scale-up repetitive As(III)-exclusion. RSM was used to measure the optimum power-temperature-time of microwave irradiation. The structures of HG1, HG2, and As(III)-adsorbed HG2/ As(III)-HG2, in situ anchored comonomers, GMTR-grafting, reusability, thermostability, and surface phenomena were comprehended by XPS, NMR, UV-vis, FTIR, TG, XRD, DLS, and SEM analyses; pHPZC; network parameters; and thermodynamic variables. The geometries, electronic structures, and variable coordinations of As(III) with HG2 were investigated through DFT studies of HG2 and As(OH)3-HG2. The highest exclusion efficiency of 25 mg HG2 within 5-100 mg L-1 As(III) and at 298 K was 192.91 mg g-1, which was significantly higher than that of HG1.
Collapse
Affiliation(s)
- Mrinmoy Karmakar
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Block-LB-11, Sector-III, Salt Lake, Kolkata 700106, West Bengal, India
| | - Himarati Mondal
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Block-LB-11, Sector-III, Salt Lake, Kolkata 700106, West Bengal, India
| | - Narendra Nath Ghosh
- Department of Chemistry, University of Gour Banga, NH12, Mokdumpur, Malda, West Bengal 732103, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Block-LB-11, Sector-III, Salt Lake, Kolkata 700106, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Block-LB-11, Sector-III, Salt Lake, Kolkata 700106, West Bengal, India.
| |
Collapse
|
2
|
Jütten L, Ramírez-Gualito K, Weilhard A, Albrecht B, Cuevas G, Fernández-Alonso MD, Jiménez-Barbero J, Schlörer NE, Diaz D. Exploring the Role of Solvent on Carbohydrate-Aryl Interactions by Diffusion NMR-Based Studies. ACS OMEGA 2018; 3:536-543. [PMID: 31457911 PMCID: PMC6641296 DOI: 10.1021/acsomega.7b01630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/28/2017] [Indexed: 05/26/2023]
Abstract
Carbohydrate-protein interactions play an important role in many molecular recognition processes. An exquisite combination of multiple factors favors the interaction of the receptor with one specific type of sugar, whereas others are excluded. Stacking CH-aromatic interactions within the binding site provide a relevant contribution to the stabilization of the resulting sugar-protein complex. Being experimentally difficult to detect and analyze, the key CH-π interaction features have been very often dissected using a variety of techniques and simple model systems. In the present work, diffusion NMR spectroscopy has been employed to separate the components of sugar mixtures in different solvents on the basis of their differential ability to interact through CH-π interactions with one particular aromatic cosolute in solution. The experimental data show that the properties of the solvent did also influence the diffusion behavior of the sugars present in the mixture, inhibiting or improving their separation. Overall, the results showed that, for the considered monosaccharide derivatives, their diffusion coefficient values and, consequently, their apparent molecular sizes and/or shapes depend on the balance between solute/cosolute as well as solute/solvent interactions. Thus, in certain media and in the presence of the aromatic cosolute, the studied saccharides that are more suited to display CH-π interactions exhibited a lower diffusion coefficient than the noncomplexing sugars in the mixture. However, when dissolved in another medium, the interaction with the solvent strongly competes with that of the aromatic cosolute.
Collapse
Affiliation(s)
- Linda Jütten
- Department
für Chemie, NMR-Abteilung, Universität
zu Köln, Greinstr.
4, 50939 Köln, Germany
| | - Karla Ramírez-Gualito
- Centro
de Nanociencias y Micro y Nanotecnología, Instituto Politécnico Nacional, Avenida Luis Enrique Erro S/N, Unidad Profesional
Adolfo López Mateos, Zacatenco, C.P. 07738 Ciudad de México, México
| | - Andreas Weilhard
- Department
für Chemie, NMR-Abteilung, Universität
zu Köln, Greinstr.
4, 50939 Köln, Germany
| | - Benjamin Albrecht
- Department
für Chemie, NMR-Abteilung, Universität
zu Köln, Greinstr.
4, 50939 Köln, Germany
| | - Gabriel Cuevas
- Instituto
de Química, Universidad Nacional Autónoma de México,
Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510 Ciudad de México, México
| | | | - Jesús Jiménez-Barbero
- Centro
de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- CIC
bioGUNE, Science and
Technology Park bld 801 A, 48160 Derio, Spain
- Basque Foundation
for Science, Ikerbasque, Maria Diaz de Haro 3, 48013 Bilbao, Spain
- Department
of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940 Leioa, Spain
| | - Nils E. Schlörer
- Department
für Chemie, NMR-Abteilung, Universität
zu Köln, Greinstr.
4, 50939 Köln, Germany
| | - Dolores Diaz
- Department
für Chemie, NMR-Abteilung, Universität
zu Köln, Greinstr.
4, 50939 Köln, Germany
- Centro
de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
3
|
Singh S, Bothara SB. Physico-chemical and structural characterization of mucilage isolated from seeds of Diospyros melonoxylon Roxb. BRAZ J PHARM SCI 2014. [DOI: 10.1590/s1984-82502014000400006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mucilage was isolated from the seeds of Diospyros melonoxylonRoxb., a plant growing naturally in the forests of India. Various physico-chemical methods like particle analysis, scanning electron microscopy, differential scanning calorimetry, differential thermal analysis, thermogravimetry analysis, molecular weight by gel permeation chromatography, rheometry, elemental analysis, x-ray diffraction spectrometry, zeta potential, fourier transform infrared spectroscopy, 1D(1H and 13C) (NMR) have been employed to characterize this gum in the present study. Particle analyses suggest that mucilage had particle size in nanometer. SEM analysis suggested that the mucilage had irregular particle size. The glass transition temperature of the gum observed was 78 °C and 74 °C by DSC and DTA respectively. The Thermogravimetry analysis suggested that mucilage had good thermal stability with two stage decomposition. The molecular weight of mucilage was determined to be 8760, by gel permeation chromatography, while the viscosity of mucilage was observed to be 219.1 cP. The XRD pattern of the mucilage indicated a complete amorphous nature. Elemental analysis of the gum revealed specific contents of carbon, hydrogen, nitrogen and sulfur. The major functional groups identified from FT-IR spectrum include 3441 cm-1 (-OH), 1632 cm-1 (-COO-), 1414 cm-1 (-COO-) and 1219 cm-1 (-CH3CO). Analysis of mucilage by paper chromatography and 1D NMR indicated the presence of sugars.
Collapse
|
4
|
Manilkara zapota (Linn.) Seeds: A Potential Source of Natural Gum. ISRN PHARMACEUTICS 2014; 2014:647174. [PMID: 24729907 PMCID: PMC3960745 DOI: 10.1155/2014/647174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/16/2014] [Indexed: 11/18/2022]
Abstract
Mucilage isolated from seeds of Manilkara zapota (Linn.) P. Royen syn. is a plant growing naturally in the forests of India. This mucilage is yet to be commercially exploited, and characterized as polymer. Various physicochemical methods like particle size analysis, scanning electron microscopy, thermal analysis, gel permeation chromatography, X-ray diffraction spectrometry, zeta potential, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy have been employed to characterize this gum in the present study. Particle size analyses suggest that mucilage has particle size in nanometer. Scanning electron microscopy analysis suggests that the mucilage has irregular particle size. The glass transition temperature of the gum was observed to be 138°C and 136°C by differential scanning calorimetry and differential thermal analysis, respectively. The thermogravimetric analysis suggested that mucilage had good thermal stability. The average molecular weight of mucilage was determined to be 379180, by gel permeation chromatography, while the viscosity of mucilage was observed to be 219.1 cP. The X-ray diffraction spectrometry pattern of the mucilage indicates a completely amorphous structure. Elemental analysis of the gum revealed the contents of carbon, hydrogen, nitrogen, and sulfur to be 80.9 (%), 10.1 (%), 1.58 (%), and 512 (mg/kg), respectively. Mucilage had specific content of calcium, magnesium, potassium, lower concentrations of aluminum, cadmium, cobalt, lead, and nickel. The major functional groups identified from FT-IR spectrum include 3441 cm−1 (–OH), 1660 cm−1 (Alkenyl C–H & C=C Stretch), 1632 cm−1 (–COO–), 1414 cm−1 (–COO–), and 1219 cm−1 (–CH3CO). Analysis of mucilage by paper chromatography and 1D NMR, indicated the presence of rhamnose, xylose, arabinose, mannose, and fructose.
Collapse
|
5
|
Affiliation(s)
- Ian Cumpstey
- a Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS , Avenue de la Terrasse, 91198 , Gif-sur-Yvette CEDEX , France
| | - David Crich
- a Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS , Avenue de la Terrasse, 91198 , Gif-sur-Yvette CEDEX , France
| |
Collapse
|
6
|
Vinod V, Sashidhar R, Suresh K, Rama Rao B, Vijaya Saradhi U, Prabhakar Rao T. Morphological, physico-chemical and structural characterization of gum kondagogu (Cochlospermum gossypium): A tree gum from India. Food Hydrocoll 2008. [DOI: 10.1016/j.foodhyd.2007.05.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
|
8
|
|
9
|
León de Pinto G, Paz De Moncada N, Martínez M, De Gotera OG, Rivas C, Ocando E. Composition of Pereskia guamacho gum exudates. BIOCHEM SYST ECOL 1994. [DOI: 10.1016/0305-1978(94)90103-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
de Pinto GL, Alvarez S, Martínez M, Rojas A, Leal E. Structural studies of Melicocca bijuga gum exudate. Carbohydr Res 1993. [DOI: 10.1016/0008-6215(93)84221-q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Vogt DC, Stephen AM. The gum exudate of Encephalartos longifolius Lehm. (female): further hydrolytic studies. Carbohydr Res 1993; 238:249-60. [PMID: 8431936 DOI: 10.1016/0008-6215(93)87017-m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Sequential, acid hydrolysis of the gum exudate from Encephalartos longifolius cones gave the neutral disaccharides beta-Gal-(1-->3)-Ara (1), beta-Gal-(1-->3)-Gal, and beta-Gal-(1-->6)-Gal; the triouronic acid beta-GlcA-(1-->6)-beta-Gal-(1-->3)-Ara (2); and the biouronic acids described earlier, namely, beta-GlcA-(1-->6)-Gal (3), beta-4-O-MeGlcA-(1-->6)-Gal, and beta-GlcA-(1-->2)-Man (4). Oligomers up to the tetramer of beta-GlcA-(1-->2)-Man alpha-linked through O-4 of GlcA characterised the inner, core region of the complex acidic polysaccharide. Alternating GlcA and Man residues were indicated by FABMS of methylated, acid-degraded gum. The presence of the constituent sugar units was confirmed by methylation of the gum and partition chromatography of the products of acid hydrolysis. Partial hydrolysis gave fractions containing terminal and in-chain GlcA attached to Gal and Man. Base-catalysed degradation of the methylated products showed Rha to be exterior to GlcA in the periphery.
Collapse
Affiliation(s)
- D C Vogt
- Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| | | |
Collapse
|
12
|
de Pinto GL. Carbon-13 n.m.r.-spectral study of Acacia xanthophloea gum and its degradation products. Carbohydr Res 1991; 220:229-42. [PMID: 1811858 DOI: 10.1016/0008-6215(91)80021-e] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- G L de Pinto
- Universidad del Zulia, Facultad de Humanidades y Educación, Maracaibo, Venezuela
| |
Collapse
|