1
|
Abstract
Complex carbohydrates are ubiquitous in nature, and together with proteins and nucleic acids they comprise the building blocks of life. But unlike proteins and nucleic acids, carbohydrates form nonlinear polymers, and they are not characterized by robust secondary or tertiary structures but rather by distributions of well-defined conformational states. Their molecular flexibility means that oligosaccharides are often refractory to crystallization, and nuclear magnetic resonance (NMR) spectroscopy augmented by molecular dynamics (MD) simulation is the leading method for their characterization in solution. The biological importance of carbohydrate-protein interactions, in organismal development as well as in disease, places urgency on the creation of innovative experimental and theoretical methods that can predict the specificity of such interactions and quantify their strengths. Additionally, the emerging realization that protein glycosylation impacts protein function and immunogenicity places the ability to define the mechanisms by which glycosylation impacts these features at the forefront of carbohydrate modeling. This review will discuss the relevant theoretical approaches to studying the three-dimensional structures of this fascinating class of molecules and interactions, with reference to the relevant experimental data and techniques that are key for validation of the theoretical predictions.
Collapse
Affiliation(s)
- Robert J Woods
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States
| |
Collapse
|
2
|
Mackeen MM, Almond A, Deschamps M, Cumpstey I, Fairbanks AJ, Tsang C, Rudd PM, Butters TD, Dwek RA, Wormald MR. The conformational properties of the Glc3Man unit suggest conformational biasing within the chaperone-assisted glycoprotein folding pathway. J Mol Biol 2009; 387:335-47. [PMID: 19356590 DOI: 10.1016/j.jmb.2009.01.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 01/19/2009] [Accepted: 01/23/2009] [Indexed: 11/16/2022]
Abstract
A major puzzle is: are all glycoproteins routed through the ER calnexin pathway irrespective of whether this is required for their correct folding? Calnexin recognizes the terminal Glcalpha1-3Manalpha linkage, formed by trimming of the Glcalpha1-2Glcalpha1-3Glcalpha1-3Manalpha (Glc3Man) unit in Glc3Man9GlcNAc2. Different conformations of this unit have been reported. We have addressed this problem by studying the conformation of a series of N-glycans; i.e. Glc3ManOMe, Glc3Man(4,5,7)GlcNAc2 and Glc1Man9GlcNAc2 using 2D NMR NOESY, ROESY, T-ROESY and residual dipolar coupling experiments in a range of solvents, along with solution molecular dynamics simulations of Glc3ManOMe. Our results show a single conformation for the Glcalpha1-2Glcalpha and Glcalpha1-3Glcalpha linkages, and a major (65%) and a minor (30%) conformer for the Glcalpha1-3Manalpha linkage. Modeling of the binding of Glc1Man9GlcNAc2 to calnexin suggests that it is the minor conformer that is recognized by calnexin. This may be one of the mechanisms for controlling the rate of recruitment of proteins into the calnexin/calreticulin chaperone system and enabling proteins that do not require such assistance for folding to bypass the system. This is the first time evidence has been presented on glycoprotein folding that suggests the process may be optimized to balance the chaperone-assisted and chaperone-independent pathways.
Collapse
Affiliation(s)
- Mukram M Mackeen
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Sinitsya A, Copiková J, Pavliková H. 13C CP/MAS NMR Spectroscopy in the Analysis of Pectins. J Carbohydr Chem 2006. [DOI: 10.1080/07328309808002328] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Andriy Sinitsya
- a Institute of Chemical Technology in Prague , Technická 5, 166 28, Prague, 6, Czech Republic
| | - Jana Copiková
- a Institute of Chemical Technology in Prague , Technická 5, 166 28, Prague, 6, Czech Republic
| | - Helena Pavliková
- b Institute of Macromolecular Chemistry , Academy of Sciences of the Czech Republic , Heyrovského nám. 2, 162 06, Prague, 6, Czech Republic
| |
Collapse
|
4
|
Mackeen M, Almond A, Cumpstey I, Enis SC, Kupce E, Butters TD, Fairbanks AJ, Dwek RA, Wormald MR. The importance of including local correlation times in the calculation of inter-proton distances from NMR measurements: ignoring local correlation times leads to significant errors in the conformational analysis of the Glcα1–2Glcα linkage by NMR spectroscopy. Org Biomol Chem 2006; 4:2241-6. [PMID: 16729133 DOI: 10.1039/b604126d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The experimental determination of oligosaccharide conformations has traditionally used cross-linkage 1H-1H NOE/ROEs. As relatively few NOEs are observed, to provide sufficient conformational constraints this method relies on: accurate quantification of NOE intensities (positive constraints); analysis of absent NOEs (negative constraints); and hence calculation of inter-proton distances using the two-spin approximation. We have compared the results obtained by using 1H 2D NOESY, ROESY and T-ROESY experiments at 500 and 700 MHz to determine the conformation of the terminal Glc alpha1-2Glc alpha linkage in a dodecasaccharide and a related tetrasaccharide. For the tetrasaccharide, the NOESY and ROESY spectra produced the same qualitative pattern of linkage cross-peaks but the quantitative pattern, the relative peak intensities, was different. For the dodecasaccharide, the NOESY and ROESY spectra at 500 MHz produced a different qualitative pattern of linkage cross-peaks, with fewer peaks in the NOESY spectrum. At 700 MHz, the NOESY and ROESY spectra of the dodecasaccharide produced the same qualitative pattern of peaks, but again the relative peak intensities were different. These differences are due to very significant differences in the local correlation times for different proton pairs across this glycosidic linkage. The local correlation time for each proton pair was measured using the ratio of the NOESY and T-ROESY cross-relaxation rates, leaving the NOESY and ROESY as independent data sets for calculating the inter-proton distances. The inter-proton distances calculated including the effects of differences in local correlation times give much more consistent results.
Collapse
Affiliation(s)
- Mukram Mackeen
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Wormald MR, Petrescu AJ, Pao YL, Glithero A, Elliott T, Dwek RA. Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem Rev 2002; 102:371-86. [PMID: 11841247 DOI: 10.1021/cr990368i] [Citation(s) in RCA: 327] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mark R Wormald
- Oxford Glycobiology Institute, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, United Kingdom.
| | | | | | | | | | | |
Collapse
|
6
|
Van den Steen P, Rudd PM, Dwek RA, Opdenakker G. Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 1998; 33:151-208. [PMID: 9673446 DOI: 10.1080/10409239891204198] [Citation(s) in RCA: 523] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The biosynthesis, structures, and functions of O-glycosylation, as a complex posttranslational event, is reviewed and compared for the various types of O-glycans. Mucin-type O-glycosylation is initiated by tissue-specific addition of a GalNAc-residue to a serine or a threonine of the fully folded protein. This event is dependent on the primary, secondary, and tertiary structure of the glycoprotein. Further elongation and termination by specific transferases is highly regulated. We also describe some of the physical and biological properties that O-glycosylation confers on the protein to which the sugars are attached. These include providing the basis for rigid conformations and for protein stability. Clustering of O-glycans in Ser/Thr(/Pro)-rich domains allows glycan determinants such as sialyl Lewis X to be presented as multivalent ligands, essential for functional recognition. An additional level of regulation, imposed by exon shuffling and alternative splicing of mRNA, results in the expression of proteins that differ only by the presence or absence of Ser/Thr(/Pro)-rich domains. These domains may serve as protease-resistant spacers in cell surface glycoproteins. Further biological roles for O-glycosylation discussed include the role of isolated mucin-type O-glycans in recognition events (e.g., during fertilization and in the immune response) and in the modulation of the activity of enzymes and signaling molecules. In some cases, the O-linked oligosaccharides are necessary for glycoprotein expression and processing. In contrast to the more common mucin-type O-glycosylation, some specific types of O-glycosylation, such as the O-linked attachment of fucose and glucose, are sequon dependent. The reversible attachment of O-linked GlcNAc to cytoplasmic and nuclear proteins is thought to play a regulatory role in protein function. The recent development of novel technologies for glycan analysis promises to yield new insights in the factors that determine site occupancy, structure-function relationship, and the contribution of O-linked sugars to physiological and pathological processes. These include diseases where one or more of the O-glycan processing enzymes are aberrantly regulated or deficient, such as HEMPAS and cancer.
Collapse
|
7
|
Petrescu AJ, Butters TD, Reinkensmeier G, Petrescu S, Platt FM, Dwek RA, Wormald MR. The solution NMR structure of glucosylated N-glycans involved in the early stages of glycoprotein biosynthesis and folding. EMBO J 1997; 16:4302-10. [PMID: 9250674 PMCID: PMC1170056 DOI: 10.1093/emboj/16.14.4302] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glucosylated oligomannose N-linked oligosaccharides (Glc(x)Man9GlcNAc2 where x = 1-3) are not normally found on mature glycoproteins but are involved in the early stages of glycoprotein biosynthesis and folding as (i) recognition elements during protein N-glycosylation and chaperone recognition and (ii) substrates in the initial steps of N-glycan processing. By inhibiting the first steps of glycan processing in CHO cells using the alpha-glucosidase inhibitor N-butyl-deoxynojirimycin, we have produced sufficient Glc3Man7GlcNAc2 for structural analysis by nuclear magnetic resonance (NMR) spectroscopy. Our results show the glucosyl cap to have a single, well-defined conformation independent of the rest of the saccharide. Comparison with the conformation of Man9GlcNAc2, previously determined by NMR and molecular dynamics, shows the mannose residues to be largely unaffected by the presence of the glucosyl cap. Sequential enzymatic cleavage of the glucose residues does not affect the conformation of the remaining saccharide. Modelling of the Glc3Man9GlcNAc2, Glc2Man9GlcNAc2 and Glc1Man9GlcNAc2 conformations shows the glucose residues to be fully accessible for recognition. A more detailed analysis of the conformations allows potential recognition epitopes on the glycans to be identified and can form the basis for understanding the specificity of the glucosidases and chaperones (such as calnexin) that recognize these glycans, with implications for their mechanisms of action.
Collapse
Affiliation(s)
- A J Petrescu
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
8
|
Poppe L, Brown GS, Philo JS, Nikrad PV, Shah BH. Conformation of sLex Tetrasaccharide, Free in Solution and Bound to E-, P-, and L-Selectin,. J Am Chem Soc 1997. [DOI: 10.1021/ja9610702] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leszek Poppe
- Contribution from Amgen Inc., 3200 Walnut Street, Boulder, Colorado 80301
| | - Gregory S. Brown
- Contribution from Amgen Inc., 3200 Walnut Street, Boulder, Colorado 80301
| | - John S. Philo
- Contribution from Amgen Inc., 3200 Walnut Street, Boulder, Colorado 80301
| | | | - Bhavana H. Shah
- Contribution from Amgen Inc., 3200 Walnut Street, Boulder, Colorado 80301
| |
Collapse
|
9
|
Birkbeck AA, Ley SV, Prodger JC. Spiroketal glycomimetics: the synthesis of a conformationally restrained Sialyl Lewis X mimic. Bioorg Med Chem Lett 1995. [DOI: 10.1016/0960-894x(95)00469-a] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Abstract
Oligosaccharides represent a particularly challenging class of molecules for conformational analysis. Recent advances in experimental and theoretical methods have begun to yield further insight into their conformational behavior; however, general rules governing their conformational preferences have not yet emerged. X-ray and NMR techniques may provide vital insights into protein-bound oligosaccharide conformations, but these do not necessarily represent highly populated solution conformations. Moreover, an oligosaccharide's inherent flexibility and lack of strong intermolecular interactions places extreme demands on theoretical methods.
Collapse
Affiliation(s)
- R J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens 30602-4712, USA
| |
Collapse
|
11
|
Abstract
The minimum energy conformations of the four sterically reasonable SLe(x) and SLe(a) lactones were calculated using the molecular mechanics force-field MM2(91). The tetrasaccharide lactone involving the 3- and 2-position of the Gal moiety was found to be more stable than the 3,4-lactone both for SLe(x) and SLe(a).
Collapse
Affiliation(s)
- U Ellervik
- Lund Institute of Technology, University of Lund, Sweden
| | | |
Collapse
|