1
|
Yang Y, Qin L, Wu Y, Liu S, He X, Mao W. A sulfated polysaccharide from Dictyosphaeria cavernosa: Structural characterization and effect on immunosuppressive recovery. Int J Biol Macromol 2023; 231:123311. [PMID: 36669632 DOI: 10.1016/j.ijbiomac.2023.123311] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
A homogeneous sulfated polysaccharide DCS1 was obtained from Dictyosphaeria cavernosa by alkali extraction and chromatography purification. On the basis of chemical and spectroscopic analyses, DCS1 was a novel mannan-type sulfated polysaccharide and had a molecular weight of 15.48 kDa. DCS1 consisted of a main chain of (1 → 4)-α-d-Manp units with partial sulfate substitution at C-2 and branches at C-2/C-6. DCS1 possessed a potent immune-enhancing effect in vitro evaluated by the assays of lymphocytes proliferation and macrophage phagocytosis. The immunomodulatory effect of DCS1 in vivo was further investigated using immunosuppressed mice induced by cyclophosphamide (Cy). The data showed that DCS1 markedly increased the spleen and thymus indexes, and ameliorated the Cy-induced damage to spleen and thymus. Moreover, DCS1 had a significant effect on hematopoietic function recovery, and promoted the secretion of the interleukin-2 and tumor necrosis factor-α. Notably, DCS1 reversed the reduction of CD4+ T cells, improved the disorder of CD4+/CD8+ T cells and enhanced the immune response. The investigation demonstrated that the sulfated polysaccharide DCS1 with novel structure could be a hopeful immunomodulatory agent.
Collapse
Affiliation(s)
- Yajing Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ling Qin
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yu Wu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shan Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiaoxi He
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Wenjun Mao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
2
|
Carvalho R, Pedrosa C, Leal A, Palermo L, Mansur C. Extraction, characterization and rheological behavior of galactomannans in high salinity and temperature conditions. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1930748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Raíssa Carvalho
- Laboratório de Macromoléculas e Colóides na Indústria de Petróleo, Instituto de Macromoléculas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Engenharia Metalúrgica e de Materiais-PEMM/COPPE, Universidade Federal do Rio de Janeiro, Brazil
| | - Carolina Pedrosa
- Laboratório de Macromoléculas e Colóides na Indústria de Petróleo, Instituto de Macromoléculas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alyce Leal
- Laboratório de Macromoléculas e Colóides na Indústria de Petróleo, Instituto de Macromoléculas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Palermo
- Laboratório de Macromoléculas e Colóides na Indústria de Petróleo, Instituto de Macromoléculas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Mansur
- Laboratório de Macromoléculas e Colóides na Indústria de Petróleo, Instituto de Macromoléculas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Engenharia Metalúrgica e de Materiais-PEMM/COPPE, Universidade Federal do Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Shi XD, Yin JY, Zhang LJ, Li OY, Huang XJ, Nie SP. Studies on polysaccharides from leaf skin of Aloe barbadensis Miller: Part II. Structural characteristics and molecular properties of two lower molecular weight fractions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.01.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Tabarsa M, Karnjanapratum S, Cho M, Kim JK, You S. Molecular characteristics and biological activities of anionic macromolecules from Codium fragile. Int J Biol Macromol 2013; 59:1-12. [DOI: 10.1016/j.ijbiomac.2013.04.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/25/2013] [Accepted: 04/09/2013] [Indexed: 11/17/2022]
|
5
|
Bento JF, Mazzaro I, de Almeida Silva LM, de Azevedo Moreira R, Ferreira MLC, Reicher F, de Oliveira Petkowicz CL. Diverse patterns of cell wall mannan/galactomannan occurrence in seeds of the Leguminosae. Carbohydr Polym 2013; 92:192-9. [DOI: 10.1016/j.carbpol.2012.08.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/29/2012] [Accepted: 08/31/2012] [Indexed: 10/27/2022]
|
6
|
Ekholm FS, Ardá A, Eklund P, André S, Gabius HJ, Jiménez-Barbero J, Leino R. Studies related to Norway spruce galactoglucomannans: chemical synthesis, conformation analysis, NMR spectroscopic characterization, and molecular recognition of model compounds. Chemistry 2012; 18:14392-405. [PMID: 23008171 DOI: 10.1002/chem.201200510] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/16/2012] [Indexed: 12/20/2022]
Abstract
Galactoglucomannan (GGM) is a polysaccharide mainly consisting of mannose, glucose, and galactose. GGM is the most abundant hemicellulose in the Norway spruce (Picea abies), but is also found in the cell wall of flax seeds, tobacco plants, and kiwifruit. Although several applications for GGM polysaccharides have been developed in pulp and paper manufacturing and the food and medical industries, attempts to synthesize and study distinct fragments of this polysaccharide have not been reported previously. Herein, the synthesis of one of the core trisaccharide units of GGM together with a less-abundant tetrasaccharide fragment is described. In addition, detailed NMR spectroscopic characterization of the model compounds, comparison of the spectral data with natural GGM, investigation of the acetyl-group migration phenomena that takes place in the polysaccharide by using small model compounds, and a binding study between the tetrasaccharide model fragment and a galactose-binding protein (the toxin viscumin) are reported.
Collapse
Affiliation(s)
- Filip S Ekholm
- Laboratory of Organic Chemistry, Åbo Akademi University, Piispankatu 8, 20500 Åbo, Finland
| | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Sulfated β-d-mannan from green seaweed Codium vermilara. Carbohydr Polym 2012; 87:916-919. [DOI: 10.1016/j.carbpol.2011.06.063] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/16/2011] [Accepted: 06/21/2011] [Indexed: 11/22/2022]
|
9
|
Simões J, Nunes FM, Domingues MR, Coimbra MA. Demonstration of the presence of acetylation and arabinose branching as structural features of locust bean gum galactomannans. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.06.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Hu C, Kong Q, Yang D, Pan Y. Isolation and structural characterization of a novel galactomannan from Eremurus anisopterus (Ker. et Kir) Regel roots. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.11.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Abstract
NMR fingerprinting of the components of finely divided plant cell walls swelled in DMSO has been recently described. Cell wall gels, produced directly in the NMR tube with perdeutero-dimethylsulfoxide, allowed the acquisition of well resolved/dispersed 2D (13)C-(1)H correlated solution-state NMR spectra of the entire array of wall polymers, without the need for component fractionation. That is, without actual solubilization, and without apparent structural modification beyond that inflicted by the ball milling and ultrasonication steps, satisfactorily interpretable spectra can be acquired that reveal compositional and structural details regarding the polysaccharide and lignin components in the wall. Here, the profiling method has been improved by using a mixture of perdeuterated DMSO and pyridine (4 : 1, v/v). Adding pyridine provided not only easier sample handling because of the better mobility compared to the DMSO-d(6)-only system but also considerably elevated intensities and improved resolution of the NMR spectra due to the enhanced swelling of the cell walls. This modification therefore provides a more rapid method for comparative structural evaluation of plant cell walls than is currently available. We examined loblolly pine (Pinus taeda, a gymnosperm), aspen (Populus tremuloides, an angiosperm), kenaf (Hibiscus cannabinus, an herbaceous plant), and corn (Zea mays L., a grass, i.e., from the Poaceae family). In principle, lignin composition (notably, the syringyl : guaiacyl : p-hydroxyphenyl ratio) can be quantified without the need for lignin isolation. Correlations for p-coumarate units in the corn sample are readily seen, and a variety of the ferulate correlations are also well resolved; ferulates are important components responsible for cell wall cross-linking in grasses. Polysaccharide anomeric correlations were tentatively assigned for each plant sample based on standard samples and various literature data. With the new potential for chemometric analysis using the 2D NMR fingerprint, this gel-state method may provide the basis for an attractive approach to providing a secondary screen for selecting biomass lines and for optimizing biomass processing and conversion efficiencies.
Collapse
Affiliation(s)
- Hoon Kim
- Department of Biochemistry, and DOE Great Lakes BioEnergy Research Center, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
12
|
Estevez JM, Fernández PV, Kasulin L, Dupree P, Ciancia M. Chemical and in situ characterization of macromolecular components of the cell walls from the green seaweed Codium fragile. Glycobiology 2008; 19:212-28. [PMID: 18832454 DOI: 10.1093/glycob/cwn101] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A comprehensive analysis of the carbohydrate-containing macromolecules from the coencocytic green seaweed Codium fragile and their arrangement in the cell wall was carried out. Cell walls in this seaweed are highly complex structures composed of 31% (w/w) of linear (1-->4)-beta-D-mannans, 9% (w/w) of pyruvylated arabinogalactan sulfates (pAGS), and low amounts of hydroxyproline rich-glycoprotein epitopes (HRGP). In situ chemical imaging by synchrotron radiation Fourier transform infrared (SR-FTIR) microspectroscopy and by immunolabeling using antibodies against specific cell wall carbohydrate epitopes revealed that beta-d-mannans and pAGS are placed in the middle part of the cell wall, whereas HRGP epitopes (arabinogalactan proteins (AGPs) and extensins) are located on the wall boundaries, especially in the utricle apical zone. pAGS are sulfated at C-2 and/or C-4 of the 3-linked beta-L-arabinopyranose units and at C-4 and/or C-6 of the 3-linked beta-D-galactopyranose residues. In addition, high levels of ketals of pyruvic acid were found mainly at 3,4- of some terminal beta-D-Galp units forming a five-membered ring. Ramification was found at some C-6 of the 3-linked beta-D-Galp units. In agreement with the immunolabeled AGP epitopes, a nonsulfated branched furanosidic arabinan with 5-linked alpha-L-Araf, 3,5-linked alpha-L-Araf, and terminal alpha-L-Araf units and a nonsulfated galactan structure composed of 3-(3,6)-linked beta-D-Galp residues, both typical of type-II AG glycans were found, suggesting that AGP structures are present at low levels in the cell walls of this seaweed. Based on this study, it is starting to emerge that Codium has developed unique cell wall architecture, when compared, not only with that of vascular plants, but also with other related green seaweeds and algae.
Collapse
Affiliation(s)
- José Manuel Estevez
- Carnegie Institution of Washington, Plant Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
13
|
Cardoso MA, Noseda MD, Fujii MT, Zibetti RGM, Duarte MER. Sulfated xylomannans isolated from red seaweeds Chondrophycus papillosus and C. flagelliferus (Ceramiales) from Brazil. Carbohydr Res 2007; 342:2766-75. [PMID: 17889841 DOI: 10.1016/j.carres.2007.08.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 08/29/2007] [Accepted: 08/30/2007] [Indexed: 11/24/2022]
Abstract
Sulfated xylomannans were isolated from two species of genus Chondrophycus by aqueous extraction followed by KCl fractionation. Structural determination of the native, desulfated and Smith-degraded KCl-precipitated polysaccharides carried out by composition and methylation analysis and NMR spectroscopy (1D and 2D experiments) showed the following general structure: [see text] These xylomannans present different degrees of branching (15-25%) by beta-D-Xylp (70-80%) and beta-D-Manp-2-S (20-30%) and molecular weights (33-222kDa). This is the first report of the presence of a sulfated xylomannan in species of order Ceramiales.
Collapse
Affiliation(s)
- Marco A Cardoso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, PO Box 19046, CEP 81531-990, Curitiba, Paraná, Brazil
| | | | | | | | | |
Collapse
|
14
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update covering the period 1999-2000. MASS SPECTROMETRY REVIEWS 2006; 25:595-662. [PMID: 16642463 DOI: 10.1002/mas.20080] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This review describes the use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates and continues coverage of the field from the previous review published in 1999 (D. J. Harvey, Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates, 1999, Mass Spectrom Rev, 18:349-451) for the period 1999-2000. As MALDI mass spectrometry is acquiring the status of a mature technique in this field, there has been a greater emphasis on applications rather than to method development as opposed to the previous review. The present review covers applications to plant-derived carbohydrates, N- and O-linked glycans from glycoproteins, glycated proteins, mucins, glycosaminoglycans, bacterial glycolipids, glycosphingolipids, glycoglycerolipids and related compounds, and glycosides. Applications of MALDI mass spectrometry to the study of enzymes acting on carbohydrates (glycosyltransferases and glycosidases) and to the synthesis of carbohydrates, are also covered.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
15
|
Tai-Nin Chow J, Williamson DA, Yates KM, Goux WJ. Chemical characterization of the immunomodulating polysaccharide of Aloe vera L. Carbohydr Res 2005; 340:1131-42. [PMID: 15797128 DOI: 10.1016/j.carres.2005.02.016] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 02/11/2005] [Indexed: 11/23/2022]
Abstract
The polysaccharide isolated by alcohol precipitation of Aloe vera mucilaginous gel was found to have a Man:Glc:Gal:GalA:Fuc:Ara:Xyl ratio of 120:9:6:3:2:2:1 with traces of Rha and GlcA. Linkage analysis of the endo-(1-->4)-beta-d-mannanase-treated sample yielded Manp-(1--> (approximately 26%), 4-Manp (approximately 53%), 2,4-Manp (approximately 3%), 3,4-Manp (approximately 1%), 4,6-Manp (approximately 1%), 4-Glcp (approximately 5%), 4-Xylp (approximately 1%), Xylp-(1--> (approximately 2%), Galp-(1--> (approximately 5%), and traces of 4,6-Galp and 3,6-Galp. Hydrolysis with strong acids produced a mixture of short oligosaccharides and an acid-resistant fraction containing greater relative fractions of Manp-(1-->, Araf-(1-->, Xylp-(1-->, and 4-Xylp than the bulk polysaccharide. NMR analysis of oligosaccharides generated by endo-(1-->4)-beta-D-mannanase and acid hydrolysis showed the presence of di-, tri-, and tetrasaccharides of 4-beta-Manp, beta-Glcp-(1-->4)-Man, beta-Glcp-(1-->4)-beta-Manp-(1-->4)-Man, and beta-Manp-(1-->4)-[alpha-Galp-(1-->6)]-Man, consistent with a backbone containing alternating -->4)-beta-Manp-(1--> and -->4)-beta-Glcp-(1--> residues in a approximately 15:1 ratio. Analysis of the sample treated sequentially with endo-(1-->4)-beta-d-mannanase and alpha-D-galactosidase showed that the majority of alpha-Galp-(1--> residues were linked to O-2, O-3, or O-6 of -->4)-beta-Manp-(1--> residues, with approximately 16 -->4)-beta-Manp-(1--> residues between side chains. Our data provide direct evidence of a previously proposed glucomannan backbone, but draw into question previously proposed side-chain structures.
Collapse
Affiliation(s)
- Jimmy Tai-Nin Chow
- Department of Chemistry, The University of Texas at Dallas, PO Box 830688, Richardson, TX 75083-0688, USA
| | | | | | | |
Collapse
|
16
|
Hannuksela T, Hervé du Penhoat C. NMR structural determination of dissolved O-acetylated galactoglucomannan isolated from spruce thermomechanical pulp. Carbohydr Res 2004; 339:301-12. [PMID: 14698888 DOI: 10.1016/j.carres.2003.10.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Water-soluble O-acetylated galactoglucomannan (GGM) isolated from spruce thermomechanical pulp (TMP) by hot-water extraction was characterized by 1D and 2D (homo- and heteronuclear) NMR analysis. The backbone was found to consist of (1-->4)-linked mannopyranosyl and glucopyranosyl units in a ratio of 10:1.9-2.6. The mannopyranosyl units were acetylated at C-2 and C-3 with a degree of acetylation around 0.28-0.37 as determined by NMR. A slightly larger amount of 2-O-acetylated mannopyranosyl was detected when compared to the 3-O-acetylated component. Approximately every 10th mannopyranosyl unit was substituted at C-6 by a single alpha-galactopyranosyl unit. Fine structure determination based on sequence-specific chemical shift variations showed that the distribution of glycosyl residues is random. Small amounts of other minor polysaccharide species including xylans and galactans could also be identified by NMR.
Collapse
Affiliation(s)
- Tea Hannuksela
- Process Chemistry Group, Abo Akademi University, Porthaninkatu 3, FIN-20500, Turku/Abo, Finland.
| | | |
Collapse
|
17
|
Lundqvist J, Teleman A, Junel L, Zacchi G, Dahlman O, Tjerneld F, Stålbrand H. Isolation and characterization of galactoglucomannan from spruce ( Picea abies ). Carbohydr Polym 2002. [DOI: 10.1016/s0144-8617(01)00210-7] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Zalyalieva SV, Kabulov BD, Akhundzhanov KA, Rashidova SS. Liquid chromatography of polysaccharides. Chem Nat Compd 1999. [DOI: 10.1007/bf02238201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Sims IM, Craik DJ, Bacic A. Structural characterisation of galactoglucomannan secreted by suspension-cultured cells of Nicotiana plumbaginifolia. Carbohydr Res 1997; 303:79-92. [PMID: 9345755 DOI: 10.1016/s0008-6215(97)00144-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Galactoglucomannan (GGM) from cultures of Nicotiana plumbaginifolia has Man:Glc:Gal:Ara:Xyl in 1.0:1.1:1.0:0.1:0.04 ratio. Linkage analysis contained 4- and 4,6-Manp, 4-Glcp, terminal Galp and 2-Galp, small amounts and terminal Arap and terminal Xylp, and approximately 0.03 mol acetyl per mol of glucosyl residue. Treatment with alpha- and beta-D-galactosidases showed that the majority of the side-chains were either single Galp-alpha-(1-->residues or the disaccharide Galp-beta-(1-->2)-Galp-alpha-(1-->linked to O-6 of the 4-Manp residues of the glucomannan backbone. Analysis of the oligosaccharides generated by endo-(1-->4)-beta-mannanase digestion confirmed that the GGM comprises a backbone of predominantly alternating-->4)-D-Manp-beta-(1-->and-->4)-D-Glcp-beta-(1-->branch ed at O-6 of 65% of the 4-Manp residues. The major oligosaccharide identified was D-Glcp-beta-(1-->4)-[D-Galp-beta-(1-->2)-D-Galp-alpha-(1-->6)]-D-Man p-beta-(1-->4)-D-Glcp-beta-(1-->4)-[D-Galp-alpha-(1-->6)]-D-Manp -beta-(1-->(27%), and most of the other oligosaccharides produced in significant quantities were based on this structure.
Collapse
Affiliation(s)
- I M Sims
- Cooperative Research Centre for Industrial Plant Biopolymers, School of Botany, University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|