3
|
Shu HY, Fung CP, Liu YM, Wu KM, Chen YT, Li LH, Liu TT, Kirby R, Tsai SF. Genetic diversity of capsular polysaccharide biosynthesis in Klebsiella pneumoniae clinical isolates. MICROBIOLOGY-SGM 2009; 155:4170-4183. [PMID: 19744990 DOI: 10.1099/mic.0.029017-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Klebsiella pneumoniae is an enteric pathogen causing community-acquired and hospital-acquired infections in humans. Epidemiological studies have revealed significant diversity in capsular polysaccharide (CPS) type and clinical manifestation of K. pneumoniae infection in different geographical areas of the world. We have sequenced the capsular polysaccharide synthesis (cps) region of seven clinical isolates and compared the sequences with the publicly available cps sequence data of five strains: NTUH-K2044 (K1 serotype), Chedid (K2 serotype), MGH78578 (K52 serotype), A1142 (K57 serotype) and A1517. Among all strains, six genes at the 5' end of the cps clusters that encode proteins for CPS transportation and processing at the bacterial surface are highly similar to each other. The central region of the cps gene clusters, which encodes proteins for polymerization and assembly of the CPS subunits, is highly divergent. Based on the collected sequence, we found that either the wbaP gene or the wcaJ gene exists in a given K. pneumoniae strain, suggesting that there is a major difference in the CPS biosynthesis pathway and that the K. pneumoniae strains can be classified into at least two distinct groups. All isolates contain gnd, encoding gluconate-6-phosphate dehydrogenase, at the 3' end of the cps gene clusters. The rmlBADC genes were found in CPS K9-positive, K14-positive and K52-positive strains, while manC and manB were found in K1, K2, K5, K14, K62 and two undefined strains. Our data indicate that, while overall genomic organization is similar between different pathogenic K. pneumoniae strains, the genetic variation of the sugar moiety and polysaccharide linkage generate the diversity in CPS molecules that could help evade host immune attack.
Collapse
Affiliation(s)
- Hung-Yu Shu
- Genome Research Center, National Yang-Ming University, Taipei, Taiwan, ROC.,Department of Bioscience Technology, Chang Jung Christian University, Tainan County, Taiwan, ROC
| | - Chang-Phone Fung
- Institute of Tropical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.,Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yen-Ming Liu
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Keh-Ming Wu
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan, ROC.,Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Ying-Tsong Chen
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Ling-Hui Li
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Tze-Tze Liu
- Genome Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ralph Kirby
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Shih-Feng Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.,Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC.,Genome Research Center, National Yang-Ming University, Taipei, Taiwan, ROC.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
4
|
Michaud P, Da Costa A, Courtois B, Courtois J. Polysaccharide Lyases: Recent Developments as Biotechnological Tools. Crit Rev Biotechnol 2008; 23:233-66. [PMID: 15224891 DOI: 10.1080/07388550390447043] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Polysaccharide lyases, which are polysaccharide cleavage enzymes, act mainly on anionic polysaccharides. Produced by prokaryote and eukaryote organisms, these enzymes degrade (1,4) glycosidic bond by a beta elimination mechanism and have unsaturated oligosaccharides as major products. New polysaccharides are cleaved only by their specific polysaccharide lyases. From anionic polysaccharides controlled degradations, various biotechnological applications were investigated. This review catalogues the degradation of bacterial, plant and animal polysaccharides (neutral and anionic) by this family of carbohydrate acting enzymes.
Collapse
Affiliation(s)
- P Michaud
- Laboratoire des Glucides--LPMV, IUT/Génie Biologique, Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, 80025 Amiens Cedex, France.
| | | | | | | |
Collapse
|
6
|
Leone S, Izzo V, Silipo A, Sturiale L, Garozzo D, Lanzetta R, Parrilli M, Molinaro A, Di Donato A. A novel type of highly negatively charged lipooligosaccharide from Pseudomonas stutzeri OX1 possessing two 4,6-O-(1-carboxy)-ethylidene residues in the outer core region. ACTA ACUST UNITED AC 2004; 271:2691-704. [PMID: 15206934 DOI: 10.1111/j.1432-1033.2004.04197.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pseudomonas stutzeri OXI is a Gram-negative microorganism able to grow in media containing aromatic hydrocarbons. A novel lipo-oligosaccharide from P. stutzeri OX1 was isolated and characterized. For the first time, the presence of two moieties of 4,6-O-(1-carboxy)-ethylidene residues (pyruvic acid) was identified in a core region; these two residues were found to possess different absolute configuration. The structure of the oligosaccharide backbone was determined using either alkaline or acid hydrolysis. Alkaline treatment, aimed at recovering the complete carbohydrate backbone, was carried out by mild hydrazinolysis (de-O-acylation) followed by de-N-acylation using hot KOH. The lipo-oligosaccharide was also analyzed after acid treatment, attained by mild hydrolysis with acetic acid, to obtain information on the nature of the phosphate and acyl groups. The two resulting oligosaccharides were isolated by gel permeation chromatography, and investigated by compositional and methylation analyses, by MALDI mass spectrometry, and by 1H-, 31P- and 13C-NMR spectroscopy. These experiments led to the identification of the major oligosaccharide structure representative of core region-lipid A. All sugars are D-pyranoses and alpha-linked, if not stated otherwise. Based on the structure found, the hypothesis can be advanced that pyruvate residues are used to block elongation of the oligosaccharide chain. This would lead to a less hydrophilic cellular surface, indicating an adaptive response of P. sutzeri OX1 to a hydrocarbon-containing environment.
Collapse
Affiliation(s)
- Serena Leone
- Dipartimento di Chimica Organica e Biochimica, Universita degli Studi di Napoli Federico II, Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gianni R, Cescutti P, Bosco M, Fett WF, Rizzo R. Influence of substituents on the solution conformation of the exopolysaccharide produced by Pseudomonas 'gingeri' strain Pf9. Int J Biol Macromol 1999; 26:249-53. [PMID: 10569286 DOI: 10.1016/s0141-8130(99)00090-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The influence of pyruvate ketals and acetyl groups on the conformational behaviour of the exopolysaccharide produced by Pseudomonas 'gingeri' strain Pf9 has been investigated experimentally through studies of intrinsic viscosity and circular dichroism experiments. A conformational variation was detected as a function of the ionic strength. Measurements carried out on the native polymer, as well as on both de-pyruvated and de-acetylated samples, suggested a critical role for the acetyl group on the solution conformation of the polysaccharide. Molecular mechanics calculations indicated the possibility of intramolecular hydrogen bonding between acetyl substituents on the mannose and the C(2)OH group of the preceding saccharidic unit. NMR linewidth measurements, carried out as a function of temperature, on the low molecular weight de-pyruvated sample indicated different polymeric backbone dynamics in aqueous solutions with respect to that observed in 0.3 M NaCl solutions.
Collapse
Affiliation(s)
- R Gianni
- Dipartimento di Biochimica, Biofisica e Chimica delle Macromolecole, Universita' di Trieste, Italy
| | | | | | | | | |
Collapse
|
9
|
Rougeaux H, Kervarec N, Pichon R, Guezennec J. Structure of the exopolysaccharide of Vibrio diabolicus isolated from a deep-sea hydrothermal vent. Carbohydr Res 1999; 322:40-5. [PMID: 10629947 DOI: 10.1016/s0008-6215(99)00214-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The structure of the exopolysaccharide produced under laboratory conditions by Vibrio diabolicus, a bacterium recovered from a deep-sea hydrothermal vent, has been investigated using sugar and methylation analysis and NMR spectroscopy. The polysaccharide consists of a linear tetrasaccharide repeating unit with the following structure. -->3)-beta-D-Glcp Nac-(1-->4)-beta-D-Glcp A-(1-->4)-beta-D-Glcp A-(1-->4)-alpha-D-Galp NAc-(1-->
Collapse
Affiliation(s)
- H Rougeaux
- Ifremer, Centre de Brest, DRV/VP/BMM, Plouzané, France
| | | | | | | |
Collapse
|
11
|
Vinogradov EV, Pantophlet R, Haseley SR, Brade L, Holst O, Brade H. Structural and serological characterisation of the O-specific polysaccharide from lipopolysaccharide of Acinetobacter calcoaceticus strain 7 (DNA group 1). EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:167-73. [PMID: 9030736 DOI: 10.1111/j.1432-1033.1997.0167a.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
S-form lipopolysaccharide was isolated by phenol/water extraction from a strain of Acinetobacter calcoaceticus (DNA group 1 ). The structure of the O-antigenic polysaccharide was determined by compositional analysis and NMR spectroscopy of the de-O-acylated lipopolysaccharide. The isolated polysaccharide obtained after hydrolysis of lipopolysaccharide in 0.01 M trifluoroacetic acid has the following structure: [STRUCTURE IN TEXT] in which Pyr is pyruvate. The O-acetyl substitution of D-Gal was non-stoichiometric. The O-antigen was specifically recognised in western blots by polyclonal rabbit antisera.
Collapse
Affiliation(s)
- E V Vinogradov
- Division of Biochemical Microbiology, Center for Medicine and Biosciences, Research Center Borstel, Germany
| | | | | | | | | | | |
Collapse
|