Johnson GP, Stevens ED, French AD. Octa-O-propanoyl-β-maltose: crystal structure, acyl stacking, related structures, and conformational analysis.
Carbohydr Res 2007;
342:1210-22. [PMID:
17383618 DOI:
10.1016/j.carres.2007.02.029]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 02/21/2007] [Accepted: 02/22/2007] [Indexed: 10/23/2022]
Abstract
The crystal structure of beta-maltose octapropanoate (1) was solved to improve understanding of di-, oligo-, and polysaccharide conformations. The O6 and O6' atoms are in gg and gt orientations, respectively. Extrapolation of the coordinates of the non-reducing residue and observed linkage bond and torsion angles of 1 [Formula: see text] yields a left-handed helix similar to amylose triacetate I. The phi and psi values of 1 are also similar to those of other crystalline, acylated maltose compounds as well as some hydroxyl-bearing molecules. Acylated maltose moieties are often stabilized by stacking of the carbonyl groups and alpha-carbons on O3 and O2' as well as by the exo-anomeric effect. The conformation of 1 is within the 1-kcal/mol contour on a hybrid energy map built with a dielectric constant of 7.5, but corresponds to higher energies on maps made with lower dielectric constants. In one region of phi,psi space, both hydroxyl-bearing and derivatized maltose moieties are found but no inter-residue, intramolecular hydrogen-bonding occurs. In another region, only hydroxyl-bearing molecules crystallize and O2'...O3 hydrogen bonds are always found. In agreement with the energy surfaces, amylose helices extrapolated from available linkage geometries were almost all left-handed.
Collapse