1
|
Hydrophobicity of carbohydrates and related hydroxy compounds. Carbohydr Res 2017; 446-447:101-112. [PMID: 28554012 DOI: 10.1016/j.carres.2017.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/13/2017] [Indexed: 11/21/2022]
Abstract
The hydrophobic interaction of carbohydrates and other hydroxy compounds with a C18-modified silica gel column was measured with pure water as eluent, thereby expanding the range of measurements already published. The interaction is augmented by structure strengthening salts and decreasing temperature. Although the interaction of the solute with the hydrophobic interface is expected to only imperfectly reflect its state in aqueous bulk solution, the retention can be correlated to hydration numbers calculated from molecular mechanics studies given in the literature. No correlation can be established towards published hydration numbers obtained by physical methods (isentropic compressibility, O-17 NMR relaxation, terahertz spectroscopy, and viscosity). The hydrophobicity is discussed with respect to the chemical structure. It increases with the fraction and size of hydrophobic molecular surface regions.
Collapse
|
2
|
DFT optimization and DFT-MD studies of glucose, ten explicit water molecules enclosed by an implicit solvent, COSMO. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2013.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Wang D, Ámundadóttir ML, van Gunsteren WF, Hünenberger PH. Intramolecular hydrogen-bonding in aqueous carbohydrates as a cause or consequence of conformational preferences: a molecular dynamics study of cellobiose stereoisomers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:521-37. [DOI: 10.1007/s00249-013-0901-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/19/2013] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
|
4
|
Chaytor JL, Ben RN. Assessing the ability of a short fluorinated antifreeze glycopeptide and a fluorinated carbohydrate derivative to inhibit ice recrystallization. Bioorg Med Chem Lett 2010; 20:5251-4. [DOI: 10.1016/j.bmcl.2010.06.148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 06/25/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
|
5
|
Perić-Hassler L, Hansen HS, Baron R, Hünenberger PH. Conformational properties of glucose-based disaccharides investigated using molecular dynamics simulations with local elevation umbrella sampling. Carbohydr Res 2010; 345:1781-801. [PMID: 20576257 DOI: 10.1016/j.carres.2010.05.026] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 05/20/2010] [Accepted: 05/22/2010] [Indexed: 10/19/2022]
Abstract
Explicit-solvent molecular dynamics (MD) simulations of the 11 glucose-based disaccharides in water at 300K and 1bar are reported. The simulations were carried out with the GROMOS 45A4 force-field and the sampling along the glycosidic dihedral angles phi and psi was artificially enhanced using the local elevation umbrella sampling (LEUS) method. The trajectories are analyzed in terms of free-energy maps, stable and metastable conformational states (relative free energies and estimated transition timescales), intramolecular H-bonds, single molecule configurational entropies, and agreement with experimental data. All disaccharides considered are found to be characterized either by a single stable (overwhelmingly populated) state ((1-->n)-linked disaccharides with n=1, 2, 3, or 4) or by two stable (comparably populated and differing in the third glycosidic dihedral angle omega ; gg or gt) states with a low interconversion barrier ((1-->6)-linked disaccharides). Metastable (anti-phi or anti-psi) states are also identified with relative free energies in the range of 8-22 kJ mol(-1). The 11 compounds can be classified into four families: (i) the alpha(1-->1)alpha-linked disaccharide trehalose (axial-axial linkage) presents no metastable state, the lowest configurational entropy, and no intramolecular H-bonds; (ii) the four alpha(1-->n)-linked disaccharides (n=1, 2, 3, or 4; axial-equatorial linkage) present one metastable (anti-psi) state, an intermediate configurational entropy, and two alternative intramolecular H-bonds; (iii) the four beta(1-->n)-linked disaccharides (n=1, 2, 3, or 4; equatorial-equatorial linkage) present two metastable (anti-phi and anti-psi) states, an intermediate configurational entropy, and one intramolecular H-bond; (iv) the two (1-->6)-linked disaccharides (additional glycosidic dihedral angle) present no (isomaltose) or a pair of (gentiobiose) metastable (anti-phi) states, the highest configurational entropy, and no intramolecular H-bonds. The observed conformational preferences appear to be dictated by four main driving forces (ring conformational preferences, exo-anomeric effect, steric constraints, and possible presence of a third glycosidic dihedral angle), leaving a secondary role to intramolecular H-bonding and specific solvation effects. In spite of the weak conformational driving force attributed to solvent-exposed H-bonds in water (highly polar protic solvent), intramolecular H-bonds may still have a significant influence on the physico-chemical properties of the disaccharide by decreasing its hydrophilicity. Along with previous work, the results also complete the suggestion of a spectrum of approximate transition timescales for carbohydrates up to the disaccharide level, namely: approximately 30 ps (hydroxyl groups), approximately 1 ns (free lactol group, free hydroxymethyl groups, glycosidic dihedral angleomega in (1-->6)-linked disaccharides), approximately 10 ns to 2 micros (ring conformation, glycosidic dihedral angles phi and psi). The calculated average values of the glycosidic torsional angles agree well with the available experimental data, providing validation for the force-field and simulation methodology employed.
Collapse
Affiliation(s)
- Lovorka Perić-Hassler
- Laboratory of Physical Chemistry, ETH Zürich, ETH Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
6
|
Schnupf U, Willett J, Momany F. DFTMD studies of glucose and epimers: anomeric ratios, rotamer populations, and hydration energies. Carbohydr Res 2010; 345:503-11. [DOI: 10.1016/j.carres.2009.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/24/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
|
7
|
Williams HD, Ward R, Hardy IJ, Melia CD. The extended release properties of HPMC matrices in the presence of dietary sugars. J Control Release 2009; 138:251-9. [DOI: 10.1016/j.jconrel.2009.05.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/14/2009] [Accepted: 05/18/2009] [Indexed: 11/26/2022]
|
8
|
Kräutler V, Müller M, Hünenberger PH. Conformation, dynamics, solvation and relative stabilities of selected β-hexopyranoses in water: a molecular dynamics study with the gromos 45A4 force field. Carbohydr Res 2007; 342:2097-124. [PMID: 17573054 DOI: 10.1016/j.carres.2007.05.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 04/06/2007] [Accepted: 05/01/2007] [Indexed: 11/23/2022]
Abstract
The present article reports long timescale (200 ns) simulations of four beta-D-hexopyranoses (beta-D-glucose, beta-D-mannose, beta-D-galactose and beta-D-talose) using explicit-solvent (water) molecular dynamics and vacuum stochastic dynamics simulations together with the GROMOS 45A4 force field. Free-energy and solvation free-energy differences between the four compounds are also calculated using thermodynamic integration. Along with previous experimental findings, the present results suggest that the formation of intramolecular hydrogen-bonds in water is an 'opportunistic' consequence of the close proximity of hydrogen-bonding groups, rather than a major conformational driving force promoting this proximity. In particular, the conformational preferences of the hydroxymethyl group in aqueous environment appear to be dominated by 1,3-syn-diaxial repulsion, with gauche and solvation effects being secondary, and intramolecular hydrogen-bonding essentially negligible. The rotational dynamics of the exocyclic hydroxyl groups, which cannot be probed experimentally, is found to be rapid (10-100 ps timescale) and correlated (flip-flop hydrogen-bonds interconverting preferentially through an asynchronous disrotatory pathway). Structured solvent environments are observed between the ring and lactol oxygen atoms, as well as between the 4-OH and hydroxymethyl groups. The calculated stability differences between the four compounds are dominated by intramolecular effects, while the corresponding differences in solvation free energies are small. An inversion of the stereochemistry at either C(2) or C(4) from equatorial to axial is associated with a raise in free energy. Finally, the particularly low hydrophilicity of beta-D-talose appears to be caused by the formation of a high-occurrence hydrogen-bonded bridge between the 1,3-syn-diaxial 2-OH and 4-OH groups. Overall, good agreement is found with available experimental and theoretical data on the structural, dynamical, solvation and energetic properties of these compounds. However, this detailed comparison also reveals some discrepancies, suggesting the need (and providing a solid basis) for further refinement.
Collapse
Affiliation(s)
- Vincent Kräutler
- Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
9
|
Abstract
The conformational preference of the glycosidic linkage of methyl-beta-mannose was studied in the gas phase and in aqueous solution by ab initio calculations, and by molecular dynamics (MD) and Car-Parrinello molecular dynamics (CPMD) simulations. MD simulations were performed with various water potential functions to study the impact of the chosen water potential on the predicted conformational preference of the glycosidic linkage of the carbohydrate in solution. This study shows that the trans (t) orientation of the glycosidic linkage of methyl-beta-mannose is preferred over its gauche clockwise (g+) orientation in solution. CPMD simulations clearly indicate that this preference is due to intermolecular hydrogen bonding with surrounding water molecules, whereas no such information could be demonstrated by MD simulations. This study demonstrates the importance of ab initio molecular dynamics simulations in studying the structural properties of carbohydrate-water interactions.
Collapse
Affiliation(s)
- Orkid Coskuner
- Physical and Chemical Properties Division, National Institute of Standards and Technology, Mail Stop 8380, Gaithersburg, Maryland 20899, USA.
| |
Collapse
|
10
|
Mannock DA, Collins MD, Kreichbaum M, Harper PE, Gruner SM, McElhaney RN. The thermotropic phase behaviour and phase structure of a homologous series of racemic β-d-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction. Chem Phys Lipids 2007; 148:26-50. [PMID: 17524381 DOI: 10.1016/j.chemphyslip.2007.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 04/10/2007] [Indexed: 11/16/2022]
Abstract
The thermotropic phase behaviour of aqueous dispersions of some synthetic 1,2-di-O-alkyl-3-O-(beta-D-galactosyl)-rac-glycerols (rac-beta-D-GalDAGs) with both odd and even hydrocarbon chain lengths was studied by differential scanning calorimetry (DSC), small-angle (SAXS) and wide-angle (WAXS) X-ray diffraction. DSC heating curves show a complex pattern of lamellar (L) and nonlamellar (NL) phase polymorphism dependent on the sample's thermal history. On cooling from 95 degrees C and immediate reheating, rac-beta-D-GalDAGs typically show a single, strongly energetic phase transition, corresponding to either a lamellar gel/liquid-crystalline (L(beta)/L(alpha)) phase transition (N< or =15 carbon atoms) or a lamellar gel/inverted hexagonal (L(beta)/H(II)) phase transition (N> or =16). At higher temperatures, some shorter chain compounds (N=10-13) exhibit additional endothermic phase transitions, identified as L/NL phase transitions using SAXS/WAXS. The NL morphology and the number of associated intermediate transitions vary with hydrocarbon chain length. Typically, at temperatures just above the L(alpha) phase boundary, a region of phase coexistence consisting of two inverted cubic (Q(II)) phases are observed. The space group of the cubic phase seen on initial heating has not been determined; however, on further heating, this Q(II) phase disappears, enabling the identification of the second Q(II) phase as Pn3 m (space group Q(224)). Only the Pn3 m phase is seen on cooling. Under suitable annealing conditions, rac-beta-D-GalDAGs rapidly form highly ordered lamellar-crystalline (L(c)) phases at temperatures above (N< or =15) or below (N=16-18) the L(beta)/L(alpha) phase transition temperature (T(m)). In the N< or =15 chain length lipids, DSC heating curves show two overlapping, highly energetic, endothermic peaks on heating above T(m); corresponding changes in the first-order spacings are observed by SAXS, accompanied by two different, complex patterns of reflections in the WAXS region. The WAXS data show that there is a difference in hydrocarbon chain packing, but no difference in bilayer dimensions or hydrocarbon chain tilt for these two L(c) phases (termed L(c1) and L(c2), respectively). Continued heating of suitably annealed, shorter chain rac-beta-D-GalDAGs from the L(c2) phase results in a phase transition to an L(alpha) phase and, on further heating, to the same Q(II) or H(II) phases observed on first heating. On reheating annealed samples with longer chain lengths, a subgel phase is formed. This is characterized by a single, poorly energetic endotherm visible below the T(m). SAXS/WAXS identifies this event as an L(c)/L(beta) phase transition. However, the WAXS reflections in the di-16:0 lipid do not entirely correspond to the reflections seen for either the L(c1) or L(c2) phases present in the shorter chain rac-beta-D-GalDAGs; rather these consist of a combination of L(c1), L(c2) and L(beta) reflections, consistent with DSC data where all three phase transitions occur within a span of 5 degrees C. At very long chain lengths (N> or =19), the L(beta)/L(c) conversion process is so slow that no L(c) phases are formed over the time scale of our experiments. The L(beta)/L(c) phase conversion process is significantly faster than that seen in the corresponding rac-beta-D-GlcDAGs, but is slower than in the 1,2-sn-beta-D-GalDAGs already studied. The L(alpha)/NL phase transition temperatures are also higher in the rac-beta-D-GalDAGs than in the corresponding rac-beta-D-GlcDAGs, suggesting that the orientation of the hydroxyl at position 4 and the chirality of the glycerol molecule in the lipid/water interface influence both the L(c) and NL phase properties of these lipids, probably by controlling the relative positions of hydrogen bond donors and acceptors in the polar region of the membrane.
Collapse
Affiliation(s)
- David A Mannock
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
11
|
Suzuki T, Kawashima H, Sota T. Conformational Properties of and a Reorientation Triggered by Sugar−Water Vibrational Resonance in the Hydroxymethyl Group in Hydrated β-Glucopyranose. J Phys Chem B 2006; 110:2405-18. [PMID: 16471832 DOI: 10.1021/jp052993z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this paper, we discuss the conformational properties of the hydroxymethyl group of beta-glucopyranose in aqueous solution and its reorientation mechanism. First, using the values for the hydroxymethyl torsion (O5-C5-C6-O6) angle obtained by our ab initio simulations, we reestimate the experimental ratio of the hydroxymethyl rotamer populations. The reestimated ratio is found to be in agreement with those previously reported in several computational studies, which probably partly explains the discrepancies between theoretical and experimental studies that have been discussed in the literature. Second, our time-frequency analysis on a reorientation in the hydroxymethyl group in an ab initio molecular dynamics trajectory suggests that, before the reorientation, the O6-H6 stretching mode is vibrationally coupled with a proton-accepting first-hydration-shell water molecule, whereas the C6-O6 stretching mode is vibrationally coupled with a proton-donating one. The amount of the total vibrational energy induced by these vibrational couplings is estimated to be comparable to typical values for the potential barriers between hydroxymethyl rotamers. To elucidate the vibrational couplings, we investigate the hydrogen-bonding properties around the hydroxymethyl group during the pretransition period. The implications, validity, and limitation of a possible reorientation mechanism based on these findings are also discussed.
Collapse
Affiliation(s)
- Teppei Suzuki
- Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.
| | | | | |
Collapse
|
12
|
Fabri D, Williams MAK, Halstead TK. Water T2 relaxation in sugar solutions. Carbohydr Res 2005; 340:889-905. [PMID: 15780255 DOI: 10.1016/j.carres.2005.01.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2004] [Accepted: 01/27/2005] [Indexed: 10/25/2022]
Abstract
1H spin-spin relaxation times of water were measured with the CPMG sequence in dilute aqueous solutions of glucitol, mannitol, glycerol, glycol, the methyl D-pyranosides of alpha-glucose, beta-glucose, alpha-galactose, beta-galactose, alpha-xylose, beta-xylose, beta-arabinose and sucrose, alpha,alpha-trehalose, beta-maltose, maltotriose and maltoheptaose. The relaxation-time dispersion was measured by varying the CPMG pulse spacing, tau. These data were interpreted by means of the Carver-Richards model in which exchange between water protons and labile solute hydroxyl protons provides a significant contribution to the relaxation. From the dependences on temperature and tau, parameters characteristic of the pool of hydroxyls belonging to a given solute were extracted by nonlinear regression, including: the fraction of exchangeable protons, P, the chemical-shift difference between water protons and hydroxyl protons, deltaomega, the intrinsic spin-spin relaxation time, T2, and the chemical exchange rate, k. These solute-specific parameters are related, respectively, to the concentration, identity, mobility and exchange life-time of the hydroxyl site. At 298 K, values of deltaomega, T2 and k were found to be of the order of 1 ppm, 100 ms and 1000 s(-1), respectively. Effects of molecular size, conformation and solute concentration were investigated. The exchange mechanism was characterised by Eyring activation enthalpies and entropies with values in the ranges 50-70 kJ mol(-1) and -10 to 60 J K(-1)mol(-1), respectively.
Collapse
Affiliation(s)
- Deborah Fabri
- Department of Chemistry, University of York, Heslington, York YO19 6AL, UK.
| | | | | |
Collapse
|
13
|
Cheetham NWH, Dasgupta P. Studies of Disaccharide Solvation—Molecular Dynamics versus HPLC Retention. Aust J Chem 2005. [DOI: 10.1071/ch04158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Molecular dynamics simulations have been used to assess the conformational behaviour of seven disaccharides in aqueous solution. Solvation decreased the overall conformational fluctuations of the sugars, compared to in vacuo simulations using a high dielectric constant. The most significant finding was a linear correlation between the experimental chromatographic retention parameter K´ and a molecular modelling parameter based on the next-nearest oxygen–oxygen distances in the disaccharides. The results support previous proposals for a stereospecific hydration model for carbohydrates and demonstrate the utility of a combined experimental/molecular modelling approach to its study.
Collapse
|
14
|
Momany FA, Appell M, Strati G, Willett JL. B3LYP/6-311++G** study of monohydrates of α- and β-d-glucopyranose: hydrogen bonding, stress energies, and effect of hydration on internal coordinates. Carbohydr Res 2004; 339:553-67. [PMID: 15013392 DOI: 10.1016/j.carres.2003.10.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 10/16/2003] [Indexed: 10/26/2022]
Abstract
Twenty-six monohydrates of alpha- and beta-D-glucopyranose were studied using gradient methods at the B3LYP/6-311++G** level of theory. Geometry optimization was carried out with the water molecules at different configurations around the glucose molecule. A new nomenclature for hydrated carbohydrates was developed to describe the water configurations. Zero-point vibrational energy, enthalpy, entropy, and relative free energy were obtained using the harmonic approximation. Hydrogen-bond energies for the monohydrates range from approximately -5 to -12 kcal/mol, and the average relative free energy is approximately 5 kcal/mol. The 1-hydroxy position is the most energetically favored site for hydration, and the region between the two and three positions is the next-most favored site. A water molecule approaching alpha-D-glucose between the 1- and 2-hydroxy positions pulls the 2-hydroxyl hydrogen atom away from the 1-hydroxy oxygen atom, thus increasing the hydrogen-bond length and also increasing the alpha-D-glucose energy. The increase in energy that occurs with a similar interaction on the beta-anomer is much less effective since the hydrogen bond is much longer. Using the calculated free energies of all 26 configurations, the anomer population (alpha/beta) increases in the beta-anomer population relative to the in vacuo case by approximately 10% at the expense of the alpha-anomer, giving an (alpha/beta) ratio of approximately 50/50. This result arises from entropy contributions favoring the beta-anomer more than the alpha-anomer. From analysis of donor and acceptor hydrogen-bond lengths, excellent correlation is found between the DFT calculated distances and those taken from carbohydrate structures in the Cambridge Crystallographic Data Bank.
Collapse
Affiliation(s)
- F A Momany
- Plant Polymer Research, USDA, ARS, National Center for Agricultural Utilization Research, 1815 N University Street, Peoria, IL 61604, USA.
| | | | | | | |
Collapse
|
15
|
Kirschner KN, Woods RJ. Solvent interactions determine carbohydrate conformation. Proc Natl Acad Sci U S A 2001; 98:10541-5. [PMID: 11526221 PMCID: PMC58501 DOI: 10.1073/pnas.191362798] [Citation(s) in RCA: 395] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2001] [Accepted: 07/16/2001] [Indexed: 11/18/2022] Open
Abstract
The relationship between the three-dimensional structures of oligosaccharides and polysaccharides and their biological properties has been the focus of many recent studies. The overall conformation of an oligosaccharide depends primarily on the orientation of the torsion angles (phi, psi, and omega) between glycosyl residues. Numerous experimental studies have shown that in glucopyranosides the omega-torsion angle (O(6)-C(6)-C(5)-O(5)) displays a preference for gauche orientations, in disagreement with predictions based on gas-phase quantum mechanics calculations. In contrast, the omega-angle in galactopyranosides displays a high proportion of the anti-orientation. For oligosaccharides containing glycosidic linkages at the 6-position (1-->6 linked), variations in rotamer population have a direct effect on the oligosaccharides' structure and function, and yet the physical origin of these conformational preferences remains unclear. Although it is generally recognized that the gauche effect in carbohydrates is a solvent-dependent phenomenon, the mechanism through which solvent induces the gauche preference is not understood. In the present work, quantum mechanics and solvated molecular dynamics calculations were performed on two representative carbohydrates, methyl alpha-D-glucopyranoside and methyl alpha-D-galactopyranoside. We show that correct reproduction of the experimental rotamer distributions about the omega-angles is obtained only after explicit water is included in the molecular dynamics simulations. The primary role of the water appears to be to disrupt the hydrogen bonding within the carbohydrate, thereby allowing the rotamer populations to be determined by internal electronic and steric repulsions between the oxygen atoms. The results reported here provide a quantitative explanation of the conformational behavior of (1-->6)-linked carbohydrates.
Collapse
Affiliation(s)
- K N Kirschner
- Complex Carbohydrate Research Center, University of Georgia, 220 Riverbend Road, Athens, GA 30606, USA
| | | |
Collapse
|