1
|
Xiong K, Xiong S, Gao S, Li Q, Sun B, Li X. Improving Hydrolysis Characteristics of Xylanases by Site-Directed Mutagenesis in Binding-Site Subsites from Streptomyces L10608. Int J Mol Sci 2018. [PMID: 29533991 PMCID: PMC5877695 DOI: 10.3390/ijms19030834] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The preparation of oligosaccharides via xylan hydrolysis is an effective way to add value to hemicellulosic material of agricultural waste. The bacterial strain Streptomyces L10608, isolated from soil, contains genes encoding xylanases of glucoside hydrolase family 10/11 (GH10/11), and these have been cloned to catalyze the production of xylooligosaccharide (XOS). To improve the XOS proportion of hydrolysates produced by xylanase, four amino acid residues were substituted by site-directed mutagenesis, and the mutant genes were overexpressed in Escherichia coli. Mutations replaced the codons encoding Asn214 (+2) and Asn86 (−2) by Ala and removed the Ricin B-lectin domain in GH10-xyn, and mutants Y115A (−2) and Y123A (−2) were produced for GH11-xyn. Interestingly, GH10-N86Q had significantly increased hydrolysis of XOS and almost eliminated xylose (X1) to <2.5%, indicating that the −2 binding site of GH10-xyn of L10608 is required for binding with xylotriose (X3). The hydrolytic activity of GH10-N86Q was increased approximately 1.25-fold using beechwood xylan as a substrate and had high affinity for the substrate with a low Km of about 1.85 mg·mL−1. Otherwise, there were no significant differences in enzymatic properties between GH10-N86Q and GH10-xyn. These mutants offer great potential for modification of xylanase with desired XOS hydrolysis.
Collapse
Affiliation(s)
- Ke Xiong
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
| | - Suyue Xiong
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
| | - Siyu Gao
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
| | - Qin Li
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
| | - Baoguo Sun
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
| | - Xiuting Li
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), No. 33 Fucheng Road, Haidian, Beijing 100048, China.
| |
Collapse
|
2
|
Improving special hydrolysis characterization into Talaromyces thermophilus F1208 xylanase by engineering of N-terminal extension and site-directed mutagenesis in C-terminal. Int J Biol Macromol 2017; 96:451-458. [DOI: 10.1016/j.ijbiomac.2016.12.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 11/22/2022]
|
3
|
Manas NHA, Bakar FDA, Illias RM. Computational docking, molecular dynamics simulation and subsite structure analysis of a maltogenic amylase from Bacillus lehensis G1 provide insights into substrate and product specificity. J Mol Graph Model 2016; 67:1-13. [DOI: 10.1016/j.jmgm.2016.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/14/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
|
4
|
Kanpiengjai A, Lumyong S, Nguyen TH, Haltrich D, Khanongnuch C. Characterization of a maltose-forming α-amylase from an amylolytic lactic acid bacterium Lactobacillus plantarum S21. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Galanakis CM, Patsioura A, Gekas V. Enzyme Kinetics Modeling as a Tool to Optimize Food Industry: A Pragmatic Approach Based on Amylolytic Enzymes. Crit Rev Food Sci Nutr 2014; 55:1758-70. [DOI: 10.1080/10408398.2012.725112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Paës G, Berrin JG, Beaugrand J. GH11 xylanases: Structure/function/properties relationships and applications. Biotechnol Adv 2011; 30:564-92. [PMID: 22067746 DOI: 10.1016/j.biotechadv.2011.10.003] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/06/2011] [Accepted: 10/13/2011] [Indexed: 01/02/2023]
Abstract
For technical, environmental and economical reasons, industrial demands for process-fitted enzymes have evolved drastically in the last decade. Therefore, continuous efforts are made in order to get insights into enzyme structure/function relationships to create improved biocatalysts. Xylanases are hemicellulolytic enzymes, which are responsible for the degradation of the heteroxylans constituting the lignocellulosic plant cell wall. Due to their variety, xylanases have been classified in glycoside hydrolase families GH5, GH8, GH10, GH11, GH30 and GH43 in the CAZy database. In this review, we focus on GH11 family, which is one of the best characterized GH families with bacterial and fungal members considered as true xylanases compared to the other families because of their high substrate specificity. Based on an exhaustive analysis of the sequences and 3D structures available so far, in relation with biochemical properties, we assess biochemical aspects of GH11 xylanases: structure, catalytic machinery, focus on their "thumb" loop of major importance in catalytic efficiency and substrate selectivity, inhibition, stability to pH and temperature. GH11 xylanases have for a long time been used as biotechnological tools in various industrial applications and represent in addition promising candidates for future other uses.
Collapse
Affiliation(s)
- Gabriel Paës
- INRA, UMR614 FARE, 2 esplanade Roland-Garros, F-51686 Reims, France.
| | | | | |
Collapse
|
7
|
|
8
|
Role of the phenylalanine 260 residue in defining product profile and alcoholytic activity of the α-amylase AmyA from Thermotoga maritima. Biologia (Bratisl) 2008. [DOI: 10.2478/s11756-008-0170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Some distinguishable properties between acid-stable and neutral types of alpha-amylases from acid-producing koji. J Biosci Bioeng 2008; 104:353-62. [PMID: 18086434 DOI: 10.1263/jbb.104.353] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 07/31/2007] [Indexed: 11/17/2022]
Abstract
The highly humid climate of Japan facilitates the growth of various molds. Among these molds, Aspergillus oryzae is the most important and popular in Japan, and has been used as yellow-koji in producing many traditional fermented beverages and foods, such as Japanese sake, and soy sauce. Taka-amylase A (TAA), a major enzyme produced by the mold, is well known worldwide to be a leading enzyme for industrial utilization and academic study, since many extensive studies have been carried out with TAA. In southern Kyushu, the other koji's of citric acid-producing molds have often been used, such as in the production of a traditional distilled liquor of shochu. The koji molds black-koji and white-koji produce two types of alpha-amylase, namely, acid-stable (AA) and common neutral (NA). The latter enzyme is enzymatically and genetically similar to TAA. In this review, we investigate AA from three molds, Aspergillus niger, A. kawachii and A. awamori, and the yeast Cryptococcus sp. regarding the distinguishable properties between AA and NA. (i) The N-terminus amino acid sequences of AA determined by molecular cloning started with the sequence of L-S-A-, whereas those of NA started with A-T-P-. (ii) Most of the full sequences of AA were composed of, besides a core catalytic domain, an extra domain of a hinge region and a carbohydrate binding domain, which could be responsible for raw-starch-digestibility. The AA from A. niger has no exceptionally extra domain, similarly to NA. (iii) Simple methods for distinguishing AA from NA using CNP-alpha-G3 and G5 as substrates were developed by our group. (iv) The number of subsite in AA on the basis of its cleavage pattern of maltooligosaccharides was estimated to be five, which differs from that of TAA, 7-9. AA has many advantages in industrial applications, such as its acid-stability, thermostability, and raw-starch digesting properties.
Collapse
|
10
|
Kim JW, Kim YH, Lee HS, Yang SJ, Kim YW, Lee MH, Kim JW, Seo NS, Park CS, Park KH. Molecular cloning and biochemical characterization of the first archaeal maltogenic amylase from the hyperthermophilic archaeon Thermoplasma volcanium GSS1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:661-9. [PMID: 17468058 DOI: 10.1016/j.bbapap.2007.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 02/26/2007] [Accepted: 03/19/2007] [Indexed: 11/30/2022]
Abstract
Maltogenic amylases (MAases), a subclass of cyclodextrin (CD)-hydrolyzing enzymes belonging to glycoside hydrolase family 13, have been studied extensively, but their physiological roles in microbes and evolutionary relationships with other amylolytic enzymes remain unclear. Here, we report the biochemical properties of a thermostable archaeal MAase from Thermoplasma volcanium GSS1 (TpMA) for the first time. The primary structure and catalytic properties of TpMA were similar to those of MAases, such as possession of an extra domain at its N-terminal and preference for CD over starch. TpMA showed high thermostability and optimal activity at 75 degrees C and 80 degrees C for beta-CD and soluble starch, respectively. The recombinant TpMA exists as a high oligomer in a solution and the oligomeric TpMA was dissociated into dimer and monomer mixture by a high concentration of NaCl. The substrate preference and thermostability of TpMA were significantly dependent on the oligomeric state of the enzyme. However, TpMA exhibited distinguishable characteristics from those of bacterial MAases. The transglycosylation pattern of TpMA was opposite to that of bacterial MAases. TpMA formed more alpha-1,4-glycosidic linked transfer product than alpha-1,6-linked products. Like as alpha-amylases, notably, TpMA has a longer subsite structure than those of other CD-degrading enzymes. Our findings in this study suggest that TpMA, the archaeal MAase, shares characteristics of both bacterial MAases and alpha-amylases, and locates in the middle of the evolutionary process between alpha-amylases and bacterial MAases.
Collapse
Affiliation(s)
- Jung-Woo Kim
- Center for Agricultural Biomaterials, and Department of Food Science and Biotechnology, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Recently, in Italy, a murder and a putative sexual violence was accomplished on a child. A bodily fluids mixture on the child's underwear between the victim (female) and the suspect (male) was ascertained by short tandem repeat (STR) DNA typing and, due to the absence of seminal fluid, saliva from the suspect and urine from the child was hypothesized. In order to investigate the possibility of specifically and rapidly detecting saliva stains both alone and mixed with other bodily fluids, we used a quantitative spectrophotometric technique, named Amylase test, for the detection of alpha-amylases. We determined alpha-amylase activity and reaction kinetic curves in several samples collected from the child's underwear. In order to confirm our intuition, we first tested saliva, perspiration, and urine, singularly and in mixtures; second, several forensic stains including saliva, perspiration, urine stains, saliva/perspiration, and saliva/urine mixture stains were tested. Evaluating alpha-amylase activity values and time-course curves' behavior of alpha-amylase reactions we were able to recognize successfully, in all cases, the presence of saliva and to distinguish it specifically from other bodily fluids containing alpha-amylase. A further confirmation of our result was provided by STR DNA typing on several areas of the underwear: a clear correlation between alpha-amylases activity and male DNA was detected on all the samples evaluated.
Collapse
Affiliation(s)
- Filippo Barni
- Carabinieri Scientific Investigation Department of Rome, Molecular Biology and Genetics Unit, Viale di Tor di Quinto 151, 00191 Rome, Italy.
| | | | | | | |
Collapse
|
12
|
Takahashi K, Nakamura N. Maltogenic Amylase from Thermomonospora viridis TF-35 Is Well Suited for the Production of Extremely High G2-syrup. J Appl Glycosci (1999) 2004. [DOI: 10.5458/jag.51.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
13
|
Nielsen JE, Borchert TV. Protein engineering of bacterial alpha-amylases. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1543:253-274. [PMID: 11150610 DOI: 10.1016/s0167-4838(00)00240-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
alpha-Amylases constitute a very diverse family of glycosyl hydrolases that cleave alpha1-->4 linkages in amylose and related polymers. Recent structural and mutagenic studies of archeael, mammalian and bacterial alpha-amylases have resulted in a wealth of information on the catalytic mechanism and on the structural features of this enzyme class. Because of their high thermo-stability, the Bacillus alpha-amylases have found widespread use in industrial processes, and much attention has been devoted to optimising these enzymes for the very harsh conditions encountered there. Stability has been a major area of focus in this respect, and several remarkably stable bacterial alpha-amylases have been produced by bioengineering techniques. Protein engineering studies of pH-activity profiles and of substrate specificities have also been initiated, although without much success. In the coming years it is likely, however, that the focus of alpha-amylase engineering will shift from engineering stability to these new areas.
Collapse
Affiliation(s)
- J E Nielsen
- EMBL, Meyerhofstrasse 1, 69117 Heidelber, Germany
| | | |
Collapse
|
14
|
André G, Buléon A, Haser R, Tran V. Amylose chain behavior in an interacting context. III. Complete occupancy of the AMY2 barley alpha-amylase cleft and comparison with biochemical data. Biopolymers 1999; 50:751-62. [PMID: 10547530 DOI: 10.1002/(sici)1097-0282(199912)50:7<751::aid-bip8>3.0.co;2-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the first two papers of this series, the tools necessary to evaluate substrate ring deformations were developed, and then the modeling of short amylose fragments (maltotriose and maltopentaose) inside the catalytic site of barley alpha-amylase was performed. In this third paper, this docking has been extended to the whole catalytic cleft. A systematic approach to extend the substrate was used on the reducing side from the previous enzyme/pentasaccharide complex. However, due to the lack of an obvious subsite at the nonreducing side, an alternate protocol has been chosen that incorporates biochemical information on the enzyme and features on the substrate shape as well. As a net result, ten subsites have been located consistent with the distribution of Ajandouz et al. (E. H. Ajandouz, J. Abe, B. Svensson, and G. Marchis-Mouren, Biochimica Biophysica Acta, 1992, Vol. 1159, pp. 193-202) and corresponding binding energies were estimated. Among them, two extreme subsites (-6) and (+4), with stacking residues Y104 and Y211, respectively, have strong affinities with glucose rings added to the substrate. No other deformation has been found for the new glucose rings added to the substrate; therefore, only ring A of the DP 10 fragment has a flexible form when interacting with the inner stacking residues Y51. Global conservation of the helical shape of the substrate can be postulated in spite of its significant distortion at subsite (-1).
Collapse
Affiliation(s)
- G André
- Laboratoire de Physico-Chimie des Macromolécules, INRA, BP 71627-44316 Nantes Cedex 03, France
| | | | | | | |
Collapse
|
15
|
Marchal LM, Goetheer E, Schimmelpennink EB, Bergsma J, Beeftink HH, Tramper J. Effect of temperature on the saccharide composition obtained after alpha-amylolysis of starch. Biotechnol Bioeng 1999; 63:344-55. [PMID: 10099614 DOI: 10.1002/(sici)1097-0290(19990505)63:3<344::aid-bit11>3.0.co;2-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The hydrolysis of starch to low-molecular-weight products (normally characterised by their dextrose equivalent (DE), which is directly related to the number-average molecular mass) was studied at different temperatures. Amylopectin potato starch, lacking amylose, was selected because of its low tendency towards retrogradation at lower temperatures. Bacillus licheniformis alpha-amylase was added to 10% [w/w] gelatinised starch solutions. The hydrolysis experiments were done at 50, 70, and 90 degrees C. Samples were taken at defined DE values and these were analysed with respect to their saccharide composition. At the same DE the oligosaccharide composition depended on the hydrolysis temperature. This implies that at the same net number of bonds hydrolysed by the enzyme, the saccharide composition was different. The hydrolysis temperature also influenced the initial overall molecular-weight distribution. Higher temperatures led to a more homogenous molecular weight distribution. Similar effects were observed for alpha-amylases from other microbial sources such as Bacillus amyloliquefaciens and Bacillus stearothermophilus. Varying the pH (5.1, 6.2, and 7.6) at 70 degrees C did not significantly influence the saccharide composition obtained during B. licheniformis alpha-amylase hydrolysis. The underlying mechanisms for B. licheniformis alpha-amylase were studied using pure linear oligosaccharides, ranging from maltotriose to maltoheptaose as substrates. Activation energies for the hydrolysis of individual oligosaccharides were calculated from Arrhenius plots at 60, 70, 80, and 90 degrees C. Oligosaccharides with a degree of polymerisation exceeding that of the substrate could be detected. The contribution of these oligosaccharides increased as the degree of polymerisation of the substrate decreased and the temperature of hydrolysis increased. The product specificity decreased with increasing temperature of hydrolysis, which led to a more equal distribution between the possible products formed. Calculations with the subsite map as determined for the closely related alpha-amylase from B. amyloliquefaciens reconfirmed this finding of a decreased substrate specificity with increased temperature of hydrolysis. Copyright 1999 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- LM Marchal
- Food and Bioprocess Engineering Group, Department of Food Technology and Nutritional Sciences, Wageningen Agricultural University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Carbonell JV, Izquierdo L, Sendra JM, Manzanares P. A monte carlo simulation of the depolymerization of linear homopolymers by endo-enzymes exhibiting random-attack probability and single-attack mechanism: application to the (1-->3), (1-->4)-beta-D-glucan/endo-(1-->3),(1-->4)-beta-D-glucanase system. Biotechnol Bioeng 1998; 60:105-13. [PMID: 10099411 DOI: 10.1002/(sici)1097-0290(19981005)60:1<105::aid-bit12>3.0.co;2-p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A Monte Carlo simulation of the depolymerization of linear homopolymers by specific endo-enzymes exhibiting random-attack probability and a single-attack mechanism has been developed. The program simulates the "real" depolymerization versus time of a polydisperse sample of substrate by a specific endo-enzyme. Given the initial mass distribution and concentration of the substrate, the initial concentration of the enzyme, and its Michaelis-Menten constant, the program simulates the evolution of the mass distribution of the substrate with the depolymerization time. When tested against experimental data from the depolymerization of barley (1-->3),(1-->4)-beta-D-glucan by malt endo-(1-->3), (1-->4)-beta-D-glucanase, monitored using the Calcofluor-FIA method with fluorescent detection, excellent results were obtained. Copyright 1998 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- JV Carbonell
- Instituto de Agroquimica y Tecnologia de Alimentos, CSIC, Poligono de la Coma s/n, Paterna, Spain
| | | | | | | |
Collapse
|
17
|
Keating L, Kelly C, Fogarty W. Mechanism of action and the substrate-dependent pH maximum shift of the alpha-amylase of Bacillus coagulans. Carbohydr Res 1998; 309:311-8. [PMID: 9764468 DOI: 10.1016/s0008-6215(98)00143-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The alpha-amylase of Bacillus coagulans is a saccharifying alpha-amylase which hydrolyses the disaccharide maltose [L. Keating, C. Kelly, and W. Fogarty, Biochem. Soc. Trans., 24 (1996) 44S]. The pH maximum for maltose hydrolysis is pH 5.0, differing from the pH maximum for starch hydrolysis which is pH 6.0. Studies using reducing end 14C-labeled maltooligosaccharides revealed a substrate-dependent pH maximum shift; hydrolysis of radiolabeled maltotriose (G3*) was maximal at pH 5.0 while the pH maximum for hydrolysis of radiolabeled maltopentaose (G5*) and maltohexaose (G6*) was pH 6.0. With maltotetraose (G4*) however, the pH maximum was pH 5.0-6.0. In addition, the bond cleavage pattern of G4* was dependent on pH. At pH 5.0, the pH maximum for maltose hydrolysis, the frequency of hydrolysis of the reducing end terminal bond of G4* was maximal. Determination of the pH maximum of the productive binding modes of the cleavage patterns of G3* to G6* illustrated the possible role of the occupation of subsite r + 2 in the pH control mechanism of B. coagulans alpha-amylase.
Collapse
Affiliation(s)
- L Keating
- Department of Industrial Microbiology, University College Dublin, Ireland
| | | | | |
Collapse
|
18
|
Sendra JM, Carbonell JV. A theoretical equation describing the time evolution of the concentration of a selected range of substrate molecular weights in depolymerization processes mediated by single-attack mechanismendo -enzymes. Biotechnol Bioeng 1998. [DOI: 10.1002/(sici)1097-0290(19980220)57:4<387::aid-bit2>3.0.co;2-i] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Janecek S. alpha-Amylase family: molecular biology and evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1997; 67:67-97. [PMID: 9401418 DOI: 10.1016/s0079-6107(97)00015-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Suganuma T, Maeda Y, Kitahara K, Nagahama T. Study of the action of human salivary alpha-amylase on 2-chloro-4-nitrophenyl alpha-maltotrioside in the presence of potassium thiocyanate. Carbohydr Res 1997; 303:219-27. [PMID: 9352636 DOI: 10.1016/s0008-6215(97)00150-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The degradation mechanism of a synthetic substrate, 2-chloro-4-nitrophenyl alpha-maltotrioside (CNP-G3), by human salivary alpha-amylase (HSA) was investigated by kinetic and product analyses. It was observed that the enzyme attacked the various CNP-maltooligosaccharides (CNP-G3 to CNP-G6) releasing free CNP. Addition of 500 mM potassium thiocyanate (KSCN) was also found to greatly increase the rates of CNP-release. It was the fastest with CNP-G3, and, in the presence of KSCN, was almost comparable to that of degradation of maltopentaose (G5). On the other hand, addition of KSCN decreased the rate of cleavage between glucan-glucan bonds in maltopentaose. Product analysis showed that KSCN addition altered the cleavage distribution which occurred 100% at the bond between CNP and G3, and that product distribution of free CNP was largely dependent on substrate concentration. Formation of CNP-G6, a larger product than the original substrate CNP-G3, was found to be present in the digest at high concentrations of substrate and in the presence of KSCN. Based on these results, a degradation pathway for CNP-G3 involving transglycosylation besides direct hydrolysis is proposed. The increase of the CNP-release by the addition of KSCN would result from a corresponding increase in the interaction between the CNP moiety and the corresponding subsite near the catalytic site, as well as the enhancement of the catalytic efficiency.
Collapse
Affiliation(s)
- T Suganuma
- Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Japan
| | | | | | | |
Collapse
|