1
|
Goudjil M, Lepore GO, Bindi L, Mugnaioli E, Baroni T, Mezaoui D, Bonazzi P. Synthesis and characterization of AsO[(W,Mo)O3]13, a new (6)-intergrowth tungsten bronze (ITB). J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
2
|
Hill MD, Egdell RG. The sodium tungsten bronzes: a study of the changes in electronic structure with composition using high-resolution electron spectroscopy. ACTA ACUST UNITED AC 2000. [DOI: 10.1088/0022-3719/16/32/013] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Abstract
The structures, electrical conductivities, oxygen deficiencies and surface activities of polycrystalline Li, Na and K bronzes of tungsten with varying alkali-metal contents have been considered in detail for the first time. There is clear evidence that as the temperature is raised so ionic mobility makes a significant contribution to the total electrical conductivity. The processes involved in ionic mobility may be diffusion of O
2−
lattice anions, the intercalate alkali-metal ion
M
+
, and a lower oxidation-state lattice cation W
y
+
(
y
< 6). All bronzes studied are shown to be oxygen deficient (to an extent that increases with the concentration of the alkali-metal intercalate) and, because their ionic conductivity is similar to that of lower oxides, O
2−
migration may be more significant than previously recognized.
Collapse
|
4
|
van den Meerakker J, Scholten M, Thijssen T. An electrochemical and X-ray photoelectron spectroscopic study into the mechanism of Ti + W alloy etching in H2O2 solutions. J Electroanal Chem (Lausanne) 1992. [DOI: 10.1016/0022-0728(92)80392-h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Kohler H, Neu W, Kreuer KD, Schmeißer D, Göpel W. La0.175WO3-perovskite: chemical characterization of the single crystal (111)/aqueous solution interface by XPS/UPS. Electrochim Acta 1989. [DOI: 10.1016/0013-4686(89)85061-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Edwards P, Egdell R, Fragala I, Goodenough J, Harrison M, Orchard A, Scott E. A study of the spinel materials LiTi2O4 and by photoelectron spectroscopy. J SOLID STATE CHEM 1984. [DOI: 10.1016/0022-4596(84)90140-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
|
8
|
Hollinger G, Pertosa P. Direct observation of the anderson transition in hxwo3 bronzes by high-resolution x-ray photoelectron spectroscopy. Chem Phys Lett 1980. [DOI: 10.1016/0009-2614(80)85173-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Courths R, Steiner P, Höchst H, Hüfner S. Photoelectron-spectroscopy investigation and electronic properties of LiNbO3 crystal surfaces. ACTA ACUST UNITED AC 1980. [DOI: 10.1007/bf00895926] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
|
11
|
|