1
|
Verma P, Tasior M, Roy P, Meech SR, Gryko DT, Vauthey E. Excited-state symmetry breaking in quadrupolar pull-push-pull molecules: dicyanovinyl vs. cyanophenyl acceptors. Phys Chem Chem Phys 2023; 25:22689-22699. [PMID: 37602791 PMCID: PMC10467566 DOI: 10.1039/d3cp02810k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
A significant number of quadrupolar dyes behave as their dipolar analogues when photoexcited in polar environments. This is due to the occurrence of excited-state symmetry breaking (ES-SB), upon which the electronic excitation, initially distributed over the whole molecule, localises preferentially on one side. Here, we investigate the ES-SB properties of two A-D-A dyes, consisting of a pyrrolo-pyrrole donor (D) and either cyanophenyl or dicyanovinyl acceptors (A). For this, we use time-resolved vibrational spectroscopy, comparing IR absorption and femtosecond stimulated Raman spectroscopies. Although dicyanovinyl is a stronger electron-withdrawing group, ES-SB is not observed with the dicyanovinyl-based dye even in highly polar media, whereas it already takes place in weakly polar solvents with dyes containing cyanophenyl accepting groups. This difference is attributed to the large electronic coupling between the D-A branches in the former dye, whose loss upon symmetry breaking cannot be counterbalanced by a gain in solvation energy. Comparison with analogues of the cyanophenyl-based dye containing different spacers reveals that interbranch coupling does not so much depend on the distance between the D-A subunits than on the nature of the spacer. We show that transient Raman spectra probe different modes of these centrosymmetric molecules but are consistent with the transient IR data. However, lifetime broadening of the Raman bands, probably due to the resonance enhancement, may limit the application of this technique for monitoring ES-SB.
Collapse
Affiliation(s)
- Pragya Verma
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Mariusz Tasior
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Palas Roy
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
2
|
Acharya S, Bagchi B. Diffusion in a two-dimensional energy landscape in the presence of dynamical correlations and validity of random walk model. Phys Rev E 2023; 107:024127. [PMID: 36932553 DOI: 10.1103/physreve.107.024127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Diffusion in a multidimensional energy surface with minima and barriers is a problem of importance in statistical mechanics and it also has wide applications, such as protein folding. To understand it in such a system, we carry out theory and simulations of a tagged particle moving on a two-dimensional periodic potential energy surface, both in the presence and absence of noise. Langevin dynamics simulations at multiple temperatures are carried out to obtain the diffusion coefficient of a solute particle. Friction is varied from zero to large values. Diffusive motion emerges in the limit of a long time, even in the absence of noise. Noise destroys the correlations and increases diffusion at small friction. Diffusion thus exhibits a nonmonotonic friction dependence at the intermediate value of the damping, ultimately converging to our theoretically predicted value. The latter is obtained using the well-established relationship between diffusion and random walk. An excellent agreement is obtained between theory and simulations in the high-friction limit but not so in the intermediate regime. We explain the deviation in the low- to intermediate-friction regime using the modified random walk theory. The rate of escape from one cell to another is obtained from the multidimensional rate theory of Langer. We find that enhanced dimensionality plays an important role. To quantify the effects of noise on the potential-imposed coherence on the trajectories, we calculate the Lyapunov exponent. At small friction values, the Lyapunov exponent mimics the friction dependence of the rate.
Collapse
Affiliation(s)
- Subhajit Acharya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
3
|
Fureraj I, Budkina DS, Vauthey E. Torsional disorder and planarization dynamics: 9,10-bis(phenylethynyl)anthracene as a case study. Phys Chem Chem Phys 2022; 24:25979-25989. [PMID: 36263805 PMCID: PMC9627944 DOI: 10.1039/d2cp03909e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/04/2022] [Indexed: 06/14/2023]
Abstract
Conjugated molecules with phenylethynyl building blocks are usually characterised by torsional disorder at room temperature. They are much more rigid in the electronic excited state due to conjugation. As a consequence, the electronic absorption and emission spectra do not present a mirror-image relationship. Here, we investigate how torsional disorder affects the excited state dynamics of 9,10-bis(phenylethynyl)anthracene in solvents of different viscosities and in polymers, using both stationary and ultrafast electronic spectroscopies. Temperature-dependent measurements reveal inhomogeneous broadening of the absorption spectrum at room temperature. This is confirmed by ultrafast spectroscopic measurements at different excitation wavelengths. Red-edge irradiation excites planar molecules that return to the ground state without significant structural dynamics. In this case, however, re-equilibration of the torsional disorder in the ground state can be observed. Higher-energy irradiation excites torsionally disordered molecules, which then planarise, leading to important spectral dynamics. The latter is found to occur partially via viscosity-independent inertial motion, whereas it is purely diffusive in the ground state. This dissimilarity is explained in terms of the steepness of the potential along the torsional coordinate.
Collapse
Affiliation(s)
- Ina Fureraj
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Darya S Budkina
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
4
|
Acharya S, Bagchi B. Non-Markovian rate theory on a multidimensional reaction surface: Complex interplay between enhanced configuration space and memory. J Chem Phys 2022; 156:134101. [DOI: 10.1063/5.0084146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A theory of barrier crossing rate on a multidimensional reaction energy surface is presented. The theory is a generalization of the earlier theoretical schemes to higher dimensions, with the inclusion of non-Markovian friction along both the reactive and the nonreactive coordinates. The theory additionally includes the bilinear coupling between the reactive and the nonreactive modes at the Hamiltonian level. Under suitable conditions, we recover the rate expressions of Langer and Hynes and establish a connection with the rate treatment of Pollak. Within the phenomenology of generalized Langevin equation description, our formulation provides an improvement over the existing ones because we explicitly include both the non-Markovian effects along the reaction coordinate and the bilinear coupling at the Hamiltonian level. At intermediate-to-large friction, an increase in dimensionality by itself tends to reduce the rate, while the inclusion of the memory effects increases the rate. The theory predicts an increase in rate when off-diagonal friction terms are included. We present a model calculation to study isomerization of a stilbene-like molecule using the prescription of Hochstrasser and co-workers on a two-dimensional reaction energy surface, employing Zwanzig–Bixon hydrodynamic theory of frequency-dependent friction. The calculated rate shows a departure from the predictions of Langer’s theory and also from the two-dimensional transition state theory.
Collapse
Affiliation(s)
- Subhajit Acharya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
5
|
Grimmelsmann L, Schuabb V, Tekin B, Winter R, Nuernberger P. Impact of kilobar pressures on ultrafast triazene and thiacyanine photodynamics. Phys Chem Chem Phys 2018; 20:18169-18175. [DOI: 10.1039/c8cp03334j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Application of high hydrostatic pressure leads to changes in (sub)picosecond emission dynamics, depending on the mechanism at work for the photoreaction.
Collapse
Affiliation(s)
| | - Vitor Schuabb
- Physikalische Chemie I – Biophysikalische Chemie
- Technische Universität Dortmund
- 44227 Dortmund
- Germany
| | - Beritan Tekin
- Physikalische Chemie II
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Roland Winter
- Physikalische Chemie I – Biophysikalische Chemie
- Technische Universität Dortmund
- 44227 Dortmund
- Germany
| | | |
Collapse
|
6
|
Waldauer SA, Stucki-Buchli B, Frey L, Hamm P. Effect of viscogens on the kinetic response of a photoperturbed allosteric protein. J Chem Phys 2015; 141:22D514. [PMID: 25494785 DOI: 10.1063/1.4897975] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
By covalently binding a photoswitchable linker across the binding groove of the PDZ2 domain, a small conformational change can be photo-initiated that mimics the allosteric transition of the protein. The response of its binding groove is investigated with the help of ultrafast pump-probe IR spectroscopy from picoseconds to tens of microseconds. The temperature dependence of that response is compatible with diffusive dynamics on a rugged energy landscape without any prominent energy barrier. Furthermore, the dependence of the kinetics on the concentration of certain viscogens, sucrose, and glycerol, has been investigated. A pronounced viscosity dependence is observed that can be best fit by a power law, i.e., a fractional viscosity dependence. The change of kinetics when comparing sucrose with glycerol as viscogen, however, provides strong evidence that direct interactions of the viscogen molecule with the protein do play a role as well. This conclusion is supported by accompanying molecular dynamics simulations.
Collapse
Affiliation(s)
- Steven A Waldauer
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Brigitte Stucki-Buchli
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Lukas Frey
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
7
|
Giordano AN, Lear BJ. Comparing the Energetic and Dynamic Contributions of Solvent to Very Low Barrier Isomerization Using Dynamic Steady-State Vibrational Spectroscopy. J Phys Chem A 2015; 119:3545-55. [DOI: 10.1021/acs.jpca.5b00510] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea N. Giordano
- Department
of Chemistry, St. John Fisher College, 3690 East Avenue, Rochester, New York 14618, United States
| | - Benjamin J. Lear
- Department
of Chemistry, The Pennsylvania State University, State College, Pennsylvania 16801, United States
| |
Collapse
|
8
|
Åberg U, Åkesson E, Fedchenia I, Sundström V. Femtosecond Laser Spectroscopy and Computer Simulations of Barrierless Isomerization in Solution. Isr J Chem 2013. [DOI: 10.1002/ijch.199300021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Singh C, Modak B, Mondal JA, Palit DK. Ultrafast Twisting Dynamics in the Excited State of Auramine. J Phys Chem A 2011; 115:8183-96. [DOI: 10.1021/jp2020287] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chandralekha Singh
- Radiation and Photochemistry Division, ‡Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Brindaban Modak
- Radiation and Photochemistry Division, ‡Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Jahur A. Mondal
- Radiation and Photochemistry Division, ‡Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Dipak K. Palit
- Radiation and Photochemistry Division, ‡Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
10
|
Alvarez JL, Yartsev A, Åberg U, Åkesson E, Sundström V. Resolving the Turnover of Temperature Dependence of the Reaction Rate in Barrierless Isomerization. J Phys Chem B 1998. [DOI: 10.1021/jp970471g] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jose-Luis Alvarez
- Department of Chemical Physics, Chemical Center, Lund University, Box 124, 221 00 Lund, Sweden
| | - Arkady Yartsev
- Department of Chemical Physics, Chemical Center, Lund University, Box 124, 221 00 Lund, Sweden
| | - Ulf Åberg
- Department of Chemical Physics, Chemical Center, Lund University, Box 124, 221 00 Lund, Sweden
| | - Eva Åkesson
- Department of Chemical Physics, Chemical Center, Lund University, Box 124, 221 00 Lund, Sweden
| | - Villy Sundström
- Department of Chemical Physics, Chemical Center, Lund University, Box 124, 221 00 Lund, Sweden
| |
Collapse
|
11
|
Diffusion-reaction approach to electronic relaxation in solution. Exact solution for delta function sink models. J CHEM SCI 1994. [DOI: 10.1007/bf02840765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
|
13
|
Chakravarti N, Sebastian K. Theory of barrierless electronic relaxation in solution. Delta function sink models. Chem Phys Lett 1993. [DOI: 10.1016/0009-2614(93)89193-l] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Sebastian KL. Theory of electronic relaxation in solution: Exact solution for a delta -function sink in a parabolic potential. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1992; 46:R1732-R1734. [PMID: 9908372 DOI: 10.1103/physreva.46.r1732] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
15
|
Gitterman M, Weiss GH. A class of exactly solvable reaction-diffusion equations with first-order distributed reaction rates. Chem Phys Lett 1992. [DOI: 10.1016/0009-2614(92)85833-v] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Photochemical isomerization in the absence of a potential barrier: origin of wavelength-dependent ground-state recovery kinetics. Chem Phys Lett 1991. [DOI: 10.1016/0009-2614(91)80243-q] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Poornimadevi C, Bagchi B. Dynamics of a barrierless reaction on a two-dimensional potential surface in solution. Chem Phys Lett 1990. [DOI: 10.1016/0009-2614(90)85610-o] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Bagchi B, Åberg U, Sundström V. Analysis of differing experimental results in barrierless reactions in solution. Chem Phys Lett 1989. [DOI: 10.1016/0009-2614(89)85129-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Poornimadevi C, Bagchi B. Fractional power dependence of rate on activation energy for reactions with very low internal barriers. Chem Phys Lett 1988. [DOI: 10.1016/0009-2614(88)85116-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|