1
|
Gray JM, Bossert J, Shyur Y, Saarel B, Briles TC, Lewandowski HJ. Characterization of a vacuum ultraviolet light source at 118 nm. J Chem Phys 2021; 154:024201. [PMID: 33445893 DOI: 10.1063/5.0033135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vacuum ultraviolet (VUV) light at 118 nm has been shown to be a powerful tool to ionize molecules for various gas-phase chemical studies. A convenient table top source of 118 nm light can be produced by frequency tripling 355 nm light from a Nd:YAG laser in xenon gas. This process has a low efficiency, typically producing only nJ/pulse of VUV light. Simple models of the tripling process predict that the power of 118 nm light produced should increase quadratically with increasing xenon pressure. However, experimental 118 nm production has been observed to reach a maximum and then decrease to zero with increasing xenon pressure. Here, we describe the basic theory and experimental setup for producing 118 nm light and a new proposed model for the mechanism limiting the production based on pressure broadened absorption.
Collapse
Affiliation(s)
- John M Gray
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Jason Bossert
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Yomay Shyur
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Ben Saarel
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Travis C Briles
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - H J Lewandowski
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
2
|
Hafliðason A, Wang H, Kvaran Á. Long term puzzles of the CH and CD energetics and related phenomena revisited; solutions sought through REMPI-photofragmentations of bromomethanes. Phys Chem Chem Phys 2016; 18:1797-806. [PMID: 26674135 DOI: 10.1039/c5cp06097d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ever since the pioneering work by Herzberg and Johns in 1969 (The Astrophysical Journal, 1969, 158, 399) the spectral assignment and the energetics of the fundamental molecular fragment CH, in the region of 63 000-65 000 cm(-1) (7.81-8.06 eV), have remained a puzzle to a large extent. The dissociation of bromoform and deuterated bromoform following two-photon resonance excitations to molecular Rydberg states forms the fragment species CH* and CD* in the excited state A(2)Δ(v' =0) as well as carbon and bromine atoms in the ground and first excited states, C/C* and Br/Br*. Further (1r + 1i)REMPI of CH* and CD* resonance excites the fragments to the energy region of concern, whereas the atom fragments were identified by further (2r + 1i)REMPI. Analysis based on spectral simulations, isotope shifts and comparison with other data allowed spectral identifications, assignments and partial characterization of four highly excited bound states for each of the molecular fragments (CH**/CD**); including the (3)(2)Π valence state and the (4)(2)Π Rydberg state, for the first time. Perturbations, shown as line-shifts, line-intensity and/or line-width alterations, due to the level-to-level state interactions between the bound states and predissociations by a repulsive state are recognized. Recording of C(+) signals in REMPI of several bromomethanes for a one-photon energy of about 40 333 cm(-1) allows the clarification of a mystery concerning a broad C(+) band frequently observed. This work, presented, demonstrates the usefulness of molecular REMPI for fragment analysis.
Collapse
Affiliation(s)
- Arnar Hafliðason
- Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.
| | | | | |
Collapse
|
4
|
Elkharrat C, Picard YJ, Billaud P, Cornaggia C, Garzella D, Perdrix M, Houver JC, Lucchese RR, Dowek D. Ion Pair Formation in Multiphoton Excitation of NO2 Using Linearly and Circularly Polarized Femtosecond Light Pulses: Kinetic Energy Distribution and Fragment Recoil Anisotropy. J Phys Chem A 2010; 114:9902-18. [DOI: 10.1021/jp103672h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. Elkharrat
- Institut des Sciences Moléculaires d’Orsay, UMR8214 Univ Paris-Sud et CNRS, Bat. 350, F-91405 Orsay Cedex, France, Service Photons Atomes & Molécules, CEA IRAMIS, Service des Photons, Atomes et Molécules, Saclay, Bat. 522, F-91191 Gif-sur-Yvette, France, and Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255
| | - Y. J. Picard
- Institut des Sciences Moléculaires d’Orsay, UMR8214 Univ Paris-Sud et CNRS, Bat. 350, F-91405 Orsay Cedex, France, Service Photons Atomes & Molécules, CEA IRAMIS, Service des Photons, Atomes et Molécules, Saclay, Bat. 522, F-91191 Gif-sur-Yvette, France, and Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255
| | - P. Billaud
- Institut des Sciences Moléculaires d’Orsay, UMR8214 Univ Paris-Sud et CNRS, Bat. 350, F-91405 Orsay Cedex, France, Service Photons Atomes & Molécules, CEA IRAMIS, Service des Photons, Atomes et Molécules, Saclay, Bat. 522, F-91191 Gif-sur-Yvette, France, and Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255
| | - C. Cornaggia
- Institut des Sciences Moléculaires d’Orsay, UMR8214 Univ Paris-Sud et CNRS, Bat. 350, F-91405 Orsay Cedex, France, Service Photons Atomes & Molécules, CEA IRAMIS, Service des Photons, Atomes et Molécules, Saclay, Bat. 522, F-91191 Gif-sur-Yvette, France, and Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255
| | - D. Garzella
- Institut des Sciences Moléculaires d’Orsay, UMR8214 Univ Paris-Sud et CNRS, Bat. 350, F-91405 Orsay Cedex, France, Service Photons Atomes & Molécules, CEA IRAMIS, Service des Photons, Atomes et Molécules, Saclay, Bat. 522, F-91191 Gif-sur-Yvette, France, and Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255
| | - M. Perdrix
- Institut des Sciences Moléculaires d’Orsay, UMR8214 Univ Paris-Sud et CNRS, Bat. 350, F-91405 Orsay Cedex, France, Service Photons Atomes & Molécules, CEA IRAMIS, Service des Photons, Atomes et Molécules, Saclay, Bat. 522, F-91191 Gif-sur-Yvette, France, and Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255
| | - J. C. Houver
- Institut des Sciences Moléculaires d’Orsay, UMR8214 Univ Paris-Sud et CNRS, Bat. 350, F-91405 Orsay Cedex, France, Service Photons Atomes & Molécules, CEA IRAMIS, Service des Photons, Atomes et Molécules, Saclay, Bat. 522, F-91191 Gif-sur-Yvette, France, and Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255
| | - R. R. Lucchese
- Institut des Sciences Moléculaires d’Orsay, UMR8214 Univ Paris-Sud et CNRS, Bat. 350, F-91405 Orsay Cedex, France, Service Photons Atomes & Molécules, CEA IRAMIS, Service des Photons, Atomes et Molécules, Saclay, Bat. 522, F-91191 Gif-sur-Yvette, France, and Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255
| | - D. Dowek
- Institut des Sciences Moléculaires d’Orsay, UMR8214 Univ Paris-Sud et CNRS, Bat. 350, F-91405 Orsay Cedex, France, Service Photons Atomes & Molécules, CEA IRAMIS, Service des Photons, Atomes et Molécules, Saclay, Bat. 522, F-91191 Gif-sur-Yvette, France, and Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255
| |
Collapse
|
5
|
Escure C, Leininger T, Lepetit B. Ab initio study of valence and Rydberg states of CH3Br. J Chem Phys 2009; 130:244306. [PMID: 19566152 DOI: 10.1063/1.3152865] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We performed configuration interaction ab initio calculations on the valence and 5s, 5p(a(1)), and 5p(e) Rydberg bands of the CH(3)Br molecule as a function of the methyl-bromide distance for frozen C(3v) geometries. The valence state potential energy curves are repulsive, the Rydberg state ones are similar to the one of the CH(3)Br(+) ion with a minimum at short distance. One state emerging from the 5p(e) band has valence and ion-pair characters as distance increases and the corresponding potential curve has a second minimum at large distance. This state has a very strong parallel electric dipole transition moment with the ground state and plays a central role in UV photon absorption spectra. It is also responsible for the parallel character of the anisotropy parameters measured in ion-pair production experiments. In each band, there is a single state, which has a non-negligible transition moment with the ground state, corresponding to a transition perpendicular to the molecular axis of symmetry, except for the 5p(e) band where it is parallel. The perpendicular transition moments between ground and valence states increase sharply as methyl-bromide distance decreases due to a mixing between valence and 5s Rydberg band at short distance. In each band, spin orbit interaction produces a pair of states, which have significant transition moments with the ground one. In the valence band, the mixing between singlet and triplet states is weak and the perpendicular transition to the (1)Q(1) state is dominant. In each Rydberg band, however, spin-orbit interaction is larger than the exchange interaction and the two significant transition moments with the ground state have comparable strengths. The valence band has an additional state ((1)Q(0)) with significant parallel transition moment induced by spin-orbit interaction with the ground state at large distance.
Collapse
Affiliation(s)
- Christelle Escure
- Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse, France
| | | | | |
Collapse
|
10
|
Suto K, Sato Y, Reed CL, Skorokhodov V, Matsumi Y, Kawasaki M. Ion Fragment Imaging of the Ion-Pair Photodissociation of CH3Cl, CH3Br, C2H5Cl, and C2H5Br at 118 nm. J Phys Chem A 1997. [DOI: 10.1021/jp962883f] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kunihiro Suto
- Institute for Electronic Science, and Graduate School of Environmental Science, Hokkaido University, Sapporo 060, Japan
| | - Yoshihiro Sato
- Institute for Electronic Science, and Graduate School of Environmental Science, Hokkaido University, Sapporo 060, Japan
| | - Claire L. Reed
- Institute for Electronic Science, and Graduate School of Environmental Science, Hokkaido University, Sapporo 060, Japan
| | - Vladimir Skorokhodov
- Institute for Electronic Science, and Graduate School of Environmental Science, Hokkaido University, Sapporo 060, Japan
| | - Yutaka Matsumi
- Institute for Electronic Science, and Graduate School of Environmental Science, Hokkaido University, Sapporo 060, Japan
| | - Masahiro Kawasaki
- Institute for Electronic Science, and Graduate School of Environmental Science, Hokkaido University, Sapporo 060, Japan
| |
Collapse
|
11
|
Suto K, Sato Y, Matsumi Y, Kawasaki M. Photofragment Imaging of CH3Br+ from (CH3Br)2+ at 355 nm. J Phys Chem A 1997. [DOI: 10.1021/jp9629304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kunihiro Suto
- Institute for Electronic Science, and Graduate School of Environmental Science, Hokkaido University, Sapporo 060, Japan
| | - Yoshihiro Sato
- Institute for Electronic Science, and Graduate School of Environmental Science, Hokkaido University, Sapporo 060, Japan
| | - Yutaka Matsumi
- Institute for Electronic Science, and Graduate School of Environmental Science, Hokkaido University, Sapporo 060, Japan
| | - Masahiro Kawasaki
- Institute for Electronic Science, and Graduate School of Environmental Science, Hokkaido University, Sapporo 060, Japan
| |
Collapse
|